A341724 Triangle read by rows: coefficients of expansion of certain sums P_2(n,k) of Fibonacci numbers as a sum of powers.
1, -2, 1, 8, -4, 1, -50, 24, -6, 1, 416, -200, 48, -8, 1, -4322, 2080, -500, 80, -10, 1, 53888, -25932, 6240, -1000, 120, -12, 1, -783890, 377216, -90762, 14560, -1750, 168, -14, 1, 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1
Offset: 0
Examples
Triangle begins: 1; -2, 1; 8, -4, 1; -50, 24, -6, 1; 416, -200, 48, -8, 1; -4322, 2080, -500, 80, -10, 1; 53888, -25932, 6240, -1000, 120, -12, 1; -783890, 377216, -90762, 14560, -1750, 168, -14, 1; 13031936, -6271120, 1508864, -242032, 29120, -2800, 224, -16, 1; ...
References
- Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin’s summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56. See Table 3.
Crossrefs
Programs
-
Maple
egf:= k-> x^k / ((1-2*sinh(-x))*k!): A341724:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n): seq(print(seq(A341724(n,k), k=0..n)), n=0..8); # Mélika Tebni, Sep 04 2023
Formula
From Mélika Tebni, Sep 04 2023: (Start)
E.g.f. of column k: x^k / ((1-2*sinh(-x))*k!).
T(n,k) = (-1)^(n-k)*binomial(n,k)*A000557(n-k).
Recurrence: T(n,0) = (-1)^n*A000557(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1. (End)
From Alois P. Heinz, Sep 04 2023: (Start)
|Sum_{k=0..n} T(n,k)| = A000556(n).
Sum_{k=0..n} |T(n,k)| = A005923(n).
Sum_{k=0..n} k * T(n,k) = A341726(n). (End)
Comments