A341740 a(n) is the maximum value of the magic constant in a normal magic triangle of order n.
12, 23, 37, 54, 74, 97, 123, 152, 184, 219, 257, 298, 342, 389, 439, 492, 548, 607, 669, 734, 802, 873, 947, 1024, 1104, 1187, 1273, 1362, 1454, 1549, 1647, 1748, 1852, 1959, 2069, 2182, 2298, 2417, 2539, 2664, 2792, 2923, 3057, 3194, 3334, 3477, 3623, 3772, 3924
Offset: 3
Links
- Terrel Trotter, Normal Magic Triangles of Order n, Journal of Recreational Mathematics Vol. 5, No. 1, 1972, pp. 28-32.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,-3,1},{12,23,37},49]
Formula
O.g.f.: x^3*(12 - 13*x + 4*x^2)/(1 - x)^3.
E.g.f.: 3 + x - 2*x^2 - exp(x)*(6 - 4*x - 3*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5.
a(n) = (3*n^2 + n - 6)/2 for n > 2.