cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341765 Consider gaps between successive odd primes from 3 up to prime(n+2). Let k1 be number of gaps congruent to 2 (mod 6) and let k2 be number of gaps congruent to 4 (mod 6). Then a(n) = k1 - k2.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Artur Jasinski, Feb 19 2021

Keywords

Comments

Theorem A: for all n, a(n) belongs to the set: {1,2}, for proof see A342156.
The indices n for which numbers of 1's and 2's in this sequence are equal are 2, 4, 6, 10, 12, 20, 36, 46, 48 and no other up to n=10^6.

Examples

			a(1)=1 because prime(2+1)-prime(2)=5-3=2 then the gap 2 is congruent to 2 mod 6, then k1=1 and k2=0 so k1 - k2 = 1.
		

Crossrefs

Programs

  • Mathematica
    k1 = 0; k2 = 0; cc = {}; Do[
    gap = Prime[n + 1] - Prime[n];
    If[Mod[gap/2, 3] == 1, k1 = k1 + 1,
      If[Mod[gap/2, 3] == 2, k2 = k2 + 1]]; AppendTo[cc, k1 - k2];
    If[k1 - k2 == 1, , If[k1 - k2 == 2, , Print[{n, k1 - k2}]]], {n, 2,
      105}]; cc
  • PARI
    a(n) = {my(vp = vector(n+1, k, prime(k+1)), dp = vector(#vp-1, k, (vp[k+1] - vp[k])/2)); my(s=0); for (k=1, #dp, if ((dp[k]%3)==1, s++); if ((dp[k]%3) == 2, s--)); s;} \\ Michel Marcus, Feb 27 2021

Formula

a(n) = 3 - A039701(n+2). - Andrey Zabolotskiy, Nov 04 2024

Extensions

Name edited by Andrey Zabolotskiy, Nov 04 2024