cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341767 Replace each digit d in the decimal representation of n with the digital root of n^d.

Original entry on oeis.org

1, 4, 9, 4, 2, 9, 7, 1, 9, 11, 22, 39, 41, 54, 69, 71, 88, 99, 11, 41, 93, 77, 78, 99, 44, 11, 99, 11, 48, 91, 14, 87, 99, 17, 88, 99, 11, 84, 99, 41, 45, 99, 71, 11, 99, 11, 72, 99, 41, 21, 96, 44, 88, 99, 11, 51, 99, 77, 28, 91, 17, 11, 99, 11, 15, 99, 14
Offset: 1

Views

Author

Sebastian Karlsson, Feb 19 2021

Keywords

Comments

If n == 1 (mod 9), then every digit will be replaced by "1". If n == 0 (mod 9), then all nonzero digits will be replaced by "9".
The corresponding n of values a(n)= 1, a(n)= 11, a(n)= 111,... creates a subsequence of A236653. - Davide Rotondo, Mar 04 2024

Examples

			a(26) = 11, since 26^2 = 676 and 26^6 = 308915776. 6 + 7 + 6 = 19, 1 + 9 = 10 and 1 + 0 = 1, so the digital root of 676 is 1. 3 + 0 + 8 + 9 + 1 + 5 + 7 + 7 + 6 = 46, 4 + 6 = 10 and 1 + 0 = 1, so the digital root of 308915776 is 1. Thus, for 26, both "2" and "6" will be replaced by "1".
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[Mod[n^IntegerDigits[n] - 1, 9] + 1]; Array[a, 100] (* Amiram Eldar, Feb 19 2021 *)
  • PARI
    dr(n) = if(n, (n-1)%9+1); \\ A010888
    a(n) = my(d=digits(n)); fromdigits(vector(#d, k, dr(n^d[k]))); \\ Michel Marcus, Feb 19 2021
  • Python
    def a(n):
        return int(''.join(str((pow(n, int(d), 9)-1)%9 + 1) for d in str(n)))
    

Formula

a(10*n) = 10*a(n) + 1.