cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341807 Number of ways to write n as an ordered sum of 8 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 8, 0, 0, 28, 0, 0, 64, 0, 0, 126, 0, 0, 224, 0, 0, 336, 8, 0, 456, 56, 0, 589, 168, 0, 672, 336, 0, 708, 616, 0, 728, 1016, 0, 658, 1400, 28, 560, 1856, 168, 476, 2352, 420, 336, 2632, 728, 238, 2968, 1260, 168, 3192, 1904, 84, 3096, 2464, 112, 3192, 3360, 308, 3024, 4144
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 20 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..70]])^8 )); // G. C. Greubel, Jul 19 2022
    
  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^8, {x, 0, nmax}], x] // Drop[#, 8] &
  • SageMath
    def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..8) ) )^m
    def A341807_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(8, x) ).list()
    a=A341807_list(100); a[8:81] # G. C. Greubel, Jul 19 2022

Formula

G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^8.

A341792 Number of partitions of n into 9 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 4, 2, 0, 3, 2, 0, 3, 3, 0, 3, 4, 1, 3, 4, 1, 2, 5, 1, 3, 5, 2, 2, 5, 2, 2, 5, 3, 2, 7, 4, 3, 6, 4, 2, 6, 4, 3, 7, 5, 3, 6, 5, 3, 6, 6, 4, 7, 7, 5, 7, 7, 3, 7, 7, 5, 7, 9, 4, 7, 9, 5, 6, 10, 5, 8
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

A341793 Number of partitions of n into 10 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 4, 2, 0, 4, 2, 0, 3, 3, 0, 4, 4, 1, 3, 4, 1, 3, 5, 1, 3, 6, 2, 3, 5, 2, 2, 6, 3, 3, 7, 4, 3, 7, 4, 3, 7, 5, 3, 8, 5, 4, 7, 6, 3, 7, 6, 5, 8, 8, 5, 8, 8, 5, 8, 8, 5, 9, 10, 6, 8, 10, 5, 8, 11, 7
Offset: 10

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

Showing 1-3 of 3 results.