A341796 Number of ways to write n as an ordered sum of 5 nonzero tetrahedral numbers.
1, 0, 0, 5, 0, 0, 10, 0, 0, 15, 0, 0, 25, 0, 0, 31, 0, 0, 30, 5, 0, 35, 20, 0, 30, 30, 0, 20, 40, 0, 20, 65, 0, 10, 65, 0, 5, 70, 10, 5, 90, 30, 0, 70, 30, 1, 85, 40, 0, 80, 60, 0, 50, 50, 0, 70, 90, 10, 50, 90, 20, 50, 80, 10, 60, 130, 20, 65, 70, 20, 65, 90, 30, 50, 110, 70, 65, 100
Offset: 5
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 5..1000
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..20]])^5 )); // G. C. Greubel, Jul 20 2022 -
Mathematica
nmax = 82; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
-
SageMath
def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..20) ) )^m def A341796_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(5, x) ).list() a=A341796_list(120); a[5:100] # G. C. Greubel, Jul 20 2022
Formula
G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^5.