cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341796 Number of ways to write n as an ordered sum of 5 nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 5, 0, 0, 10, 0, 0, 15, 0, 0, 25, 0, 0, 31, 0, 0, 30, 5, 0, 35, 20, 0, 30, 30, 0, 20, 40, 0, 20, 65, 0, 10, 65, 0, 5, 70, 10, 5, 90, 30, 0, 70, 30, 1, 85, 40, 0, 80, 60, 0, 50, 50, 0, 70, 90, 10, 50, 90, 20, 50, 80, 10, 60, 130, 20, 65, 70, 20, 65, 90, 30, 50, 110, 70, 65, 100
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100);
    Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..20]])^5 )); // G. C. Greubel, Jul 20 2022
    
  • Mathematica
    nmax = 82; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
  • SageMath
    def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..20) ) )^m
    def A341796_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(5, x) ).list()
    a=A341796_list(120); a[5:100] # G. C. Greubel, Jul 20 2022

Formula

G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^5.