cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341801 Coefficients of the series whose 12th power equals E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973.

Original entry on oeis.org

1, -24, -13932, -3585216, -1580941068, -628142318640, -281617154080704, -126114490533924480, -58596395743623957084, -27537281150571923942424, -13153668428658997172513880, -6345860505664230715931502912, -3091029995619009106117946403456
Offset: 0

Views

Author

Peter Bala, Feb 20 2021

Keywords

Comments

The g.f. is the 12th root of the g.f. of A282102.
It is easy to see that E_2(x)*E_4(x)*E_6(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3 + 21*k*5)*x^k/(1 - x^k) (mod 72), and also that the integer k - 10*k^3 + 21*k*5 = k*(3*k^2 - 1)*(7^k^2 - 1) is always divisible by 3. Hence, E_2(x)*E_4(x)*E_6(x) == 1 (mod 72). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x)* E_6(x))^(1/12) = 1 - 24*x - 13932*x^2 - 3585216*x^3 - 1580941068*x^4 - ... has integer coefficients.

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)*E(4,x)*E(6,x))^(1/12), x, 20):
    seriestolist(%);