A341801 Coefficients of the series whose 12th power equals E_2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973.
1, -24, -13932, -3585216, -1580941068, -628142318640, -281617154080704, -126114490533924480, -58596395743623957084, -27537281150571923942424, -13153668428658997172513880, -6345860505664230715931502912, -3091029995619009106117946403456
Offset: 0
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Wikipedia, Eisenstein series
Programs
-
Maple
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20): E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20): E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20): with(gfun): series((E(2,x)*E(4,x)*E(6,x))^(1/12), x, 20): seriestolist(%);
Comments