A341807 Number of ways to write n as an ordered sum of 8 nonzero tetrahedral numbers.
1, 0, 0, 8, 0, 0, 28, 0, 0, 64, 0, 0, 126, 0, 0, 224, 0, 0, 336, 8, 0, 456, 56, 0, 589, 168, 0, 672, 336, 0, 708, 616, 0, 728, 1016, 0, 658, 1400, 28, 560, 1856, 168, 476, 2352, 420, 336, 2632, 728, 238, 2968, 1260, 168, 3192, 1904, 84, 3096, 2464, 112, 3192, 3360, 308, 3024, 4144
Offset: 8
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 8..1000
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..70]])^8 )); // G. C. Greubel, Jul 19 2022 -
Mathematica
nmax = 70; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^8, {x, 0, nmax}], x] // Drop[#, 8] &
-
SageMath
def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..8) ) )^m def A341807_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(8, x) ).list() a=A341807_list(100); a[8:81] # G. C. Greubel, Jul 19 2022
Formula
G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^8.