A341808 Number of ways to write n as an ordered sum of 9 nonzero tetrahedral numbers.
1, 0, 0, 9, 0, 0, 36, 0, 0, 93, 0, 0, 198, 0, 0, 378, 0, 0, 624, 9, 0, 918, 72, 0, 1269, 252, 0, 1597, 576, 0, 1836, 1134, 0, 2025, 2025, 0, 2058, 3096, 36, 1926, 4356, 252, 1764, 5877, 756, 1470, 7182, 1512, 1134, 8388, 2772, 882, 9576, 4608, 588, 10035, 6552, 462
Offset: 9
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 9..1000
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..70]])^9 )); // G. C. Greubel, Jul 18 2022 -
Mathematica
nmax = 66; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^9, {x, 0, nmax}], x] // Drop[#, 9] &
-
SageMath
def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..8) ) )^m def A341808_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(9, x) ).list() a=A341808_list(100); a[9:71] # G. C. Greubel, Jul 18 2022
Formula
G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^9.