A341809 Number of ways to write n as an ordered sum of 10 nonzero tetrahedral numbers.
1, 0, 0, 10, 0, 0, 45, 0, 0, 130, 0, 0, 300, 0, 0, 612, 0, 0, 1095, 10, 0, 1740, 90, 0, 2565, 360, 0, 3490, 930, 0, 4351, 1980, 0, 5130, 3790, 0, 5680, 6330, 45, 5820, 9540, 360, 5715, 13620, 1260, 5292, 17950, 2880, 4530, 22140, 5670, 3780, 26490, 10170, 2940, 29770, 15840
Offset: 10
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 10..1000
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..70]])^10 )); // G. C. Greubel, Jul 18 2022 -
Mathematica
nmax = 66; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^10, {x, 0, nmax}], x] // Drop[#, 10] &
-
Sage
def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..8) ) )^m def A341809_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(10, x) ).list() a=A341809_list(100); a[10:71] # G. C. Greubel, Jul 18 2022
Formula
G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^10.