cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341832 Dirichlet g.f.: 1 / zeta(s)^6.

Original entry on oeis.org

1, -6, -6, 15, -6, 36, -6, -20, 15, 36, -6, -90, -6, 36, 36, 15, -6, -90, -6, -90, 36, 36, -6, 120, 15, 36, -20, -90, -6, -216, -6, -6, 36, 36, 36, 225, -6, 36, 36, 120, -6, -216, -6, -90, -90, 36, -6, -90, 15, -90, 36, -90, -6, 120, 36, 120, 36, 36, -6, 540, -6, 36, -90, 1, 36
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A034695.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[6, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 65}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^6)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(6, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_6(n/d) * a(d).