A341841 Square array T(n, k), n, k >= 0, read by antidiagonals upwards; for any number m with runs in binary expansion (r_1, ..., r_j), let R(m) = {r_1 + ... + r_j, r_2 + ... + r_j, ..., r_j}; T(n, k) is the unique number t such that R(t) equals R(n) minus R(k).
0, 1, 0, 2, 0, 0, 3, 3, 0, 0, 4, 3, 0, 1, 0, 5, 4, 0, 1, 1, 0, 6, 4, 7, 0, 1, 0, 0, 7, 7, 7, 7, 0, 0, 0, 0, 8, 7, 7, 6, 0, 0, 3, 1, 0, 9, 8, 7, 6, 1, 0, 3, 2, 1, 0, 10, 8, 8, 7, 1, 0, 3, 3, 2, 0, 0, 11, 11, 8, 8, 0, 0, 3, 3, 3, 3, 0, 0, 12, 11, 8, 9, 15, 0, 0, 2, 3, 3, 0, 1, 0
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+-------------------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 2| 2 3 0 1 1 0 3 2 2 3 0 1 1 0 3 2 3| 3 3 0 0 0 0 3 3 3 3 0 0 0 0 3 3 4| 4 4 7 7 0 0 3 3 3 3 0 0 7 7 4 4 5| 5 4 7 6 1 0 3 2 2 3 0 1 6 7 4 5 6| 6 7 7 6 1 0 0 1 1 0 0 1 6 7 7 6 7| 7 7 7 7 0 0 0 0 0 0 0 0 7 7 7 7 8| 8 8 8 8 15 15 15 15 0 0 0 0 7 7 7 7 9| 9 8 8 9 14 15 15 14 1 0 0 1 6 7 7 6 10| 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 11| 11 11 8 8 15 15 12 12 3 3 0 0 7 7 4 4 12| 12 12 15 15 15 15 12 12 3 3 0 0 0 0 3 3 13| 13 12 15 14 14 15 12 13 2 3 0 1 1 0 3 2 14| 14 15 15 14 14 15 15 14 1 0 0 1 1 0 0 1 15| 15 15 15 15 15 15 15 15 0 0 0 0 0 0 0 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10
- Rémy Sigrist, PARI program for A341841
- Index entries for sequences related to binary expansion of n
Programs
-
PARI
See Links section.
Comments