A341843 Number of sexy consecutive prime pairs below 2^n.
0, 0, 0, 0, 1, 4, 7, 13, 25, 45, 80, 136, 251, 443, 784, 1377, 2420, 4312, 7756, 14106, 25554, 46776, 85774, 157325, 290773, 538520, 1000321, 1861364, 3473165, 6493997, 12167342, 22851920, 42987462, 81018661, 152945700, 289206487, 547722346, 1038786862
Offset: 1
Examples
a(6)=4 because 2^6=64 and we have 4 sexy consecutive prime pairs less than 64: {23,29}, {31,37}, {47,53}, {53,59}.
Links
- Artur Jasinski, Table of n, a(n) for n = 1..48
- Andrew Odlyzko, Michael Rubinstein, Marek Wolf, Jumping-champions, Experimental Mathematics 8:2, pp. 108-118, 1999.
- Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].
- Marek Wolf, Counted prime gaps for range x from 2^15 to 2^48.
Programs
-
Mathematica
pp = {}; Do[kk = 0; Do[If[Prime[m + 1] - Prime[m] == 6, kk = kk + 1], {m, 2, PrimePi[2^n] - 1}]; AppendTo[pp, kk], {n, 4, 20}]; pp
Comments