A341872 Coefficients of the series whose 72nd power equals E_2(x)^3/E_6(x), where E_2(x) and E_6(x) are the Eisenstein series A006352 and A013973.
1, 6, 1998, 722484, 291762942, 125454173544, 56146411655460, 25832836404319152, 12128921727745915062, 5783583949613172902394, 2791762868052719757442008, 1360988846025232489401029220, 668925190887642335984231235348, 331039288912491308442251418152952
Offset: 0
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Wikipedia, Eisenstein series
Programs
-
Maple
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20): E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20): with(gfun): series((E(2,x)^3/E(6,x))^(1/72), x, 20): seriestolist(%);
Formula
a(n) ~ c * exp(2*Pi*n) / n^(71/72), where c = 0.013960369132490470055158573616810629626490780934389076244815126342923645628... - Vaclav Kotesovec, Mar 08 2021
Comments