A341873 Coefficients of the series whose 24th power equals E_2(x)^5/E_10(x), where E_2(x) and E_10(x) are the Eisenstein series A006352 and A013974.
1, 6, 7038, 2002644, 922569342, 380737463400, 175255606306116, 80315525064955440, 38028486993289854966, 18171889608389845598586, 8807723964899085718419480, 4305311468773791666900669828, 2122088430918938935321961736084
Offset: 0
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Wikipedia, Eisenstein series
Programs
-
Maple
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20): E(10,x) := 1 - 264*add(k^9*x^k/(1-x^k), k = 1..20): with(gfun): series((E(2,x)^5/E(10,x))^(1/24), x, 20): seriestolist(%);
Comments