A341875 Coefficients of the series whose 24th power equals E_2(x)*E_4(x)/E_6(x), where E_2(x), E_4(x) and E_6(x) are the Eisenstein series A006352, A004009 and A013973.
1, 30, 5310, 2453220, 910100190, 409796742600, 181276113779460, 84362079365838960, 39636500385830239350, 18986938020443181757410, 9186944625290601368703000, 4491611148118819794144792660, 2212757749022582852433835771860, 1097546094982154634980848454416920
Offset: 0
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Wikipedia, Eisenstein series
Crossrefs
Programs
-
Maple
E(2,x) := 1 - 24*add(k*x^k/(1-x^k), k = 1..20): E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20): E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20): with(gfun): series((E(2,x)*E(4,x)/E(6,x))^(1/24), x, 20): seriestolist(%);
Formula
a(n) ~ c * exp(2*Pi*n) / n^(23/24), where c = 0.0431061156115657949750305669836959595841497962033916083447436... - Vaclav Kotesovec, Mar 08 2021
Equals the series ( E_2(x)*E_8(x)/E_10(x) )^(1/24). - Peter Bala, Nov 16 2024
Comments