A341893 Indices of triangular numbers that are one-tenth of other triangular numbers.
0, 1, 6, 12, 55, 246, 474, 2107, 9360, 18018, 80029, 355452, 684228, 3039013, 13497834, 25982664, 115402483, 512562258, 986657022, 4382255359, 19463867988, 37466984190, 166410301177, 739114421304, 1422758742216, 6319209189385, 28066884141582, 54027365220036, 239963538895471, 1065802482958830, 2051617119619170
Offset: 1
Examples
a(4) = 12 is a term because its triangular number, (12*13) / 2 = 78 is one-tenth of 780, the triangular number of 39. a(4) = 38 a(1) - a(-2) +18 = 0 - 6 +18 = 12 ; a(5) = 38 a(2) - a(-1) + 18 = 38*1 - 1 +18 = 55.
Links
- Vladimir Pletser, Table of n, a(n) for n = 1..1000
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- V. Pletser, Recurrent relations for triangular multiples of other triangular numbers, Indian J. Pure Appl. Math. 53 (2022) 782-791
- Index entries for linear recurrences with constant coefficients, signature (1,38,-38,-1,1).
Crossrefs
Programs
-
Maple
f := gfun:-rectoproc({a(-3) = 6, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 6, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ;
-
Mathematica
Rest@ CoefficientList[Series[(x^2*(1 + 5*x + 6*x^2 + 5*x^3 + x^4))/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 31}], x] (* Michael De Vlieger, May 19 2022 *)
Formula
a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A068085(n).
a(n) = 38 a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
G.f.: x^2*(1 + 4*x+x^2)*(1+x+x^2)/ ((1-x)*(1-38*x^3+x^6)). - Stefano Spezia, Feb 24 2021
a(n) = A180003(n) - 1. - Hugo Pfoertner, Feb 28 2021
Comments