A341970 Irregular triangle read by rows of the indices of the entries of 1's in the corresponding rows in A237048.
1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 3, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 3, 5, 1, 1, 2, 1, 3, 4, 1, 2, 1, 5, 1, 2, 3, 6, 1, 4, 1, 2, 1, 3, 1, 2, 5, 1, 4, 1, 2, 3, 6, 1, 7, 1, 2, 1, 3, 4, 5, 1, 2, 1, 1, 2, 3, 6, 1, 4, 1, 2, 5, 7, 1, 3, 8, 1, 2, 1, 4, 1, 2, 3, 6, 1, 5
Offset: 1
Examples
a(8, 9) = { 1, 3 } is row 6 in this sequence with corresponding row 6 { 1, 0, 1 } in A237048. a(26...29) = { 1, 2, 3, 5 } is row 15 in this sequence with corresponding row 15 { 1, 1, 1, 0, 1 } in A237048. Table of the first 15 rows: row entries 1 1 2 1 3 1 1 4 1 5 1 2 6 1 3 7 1 2 8 1 9 1 2 3 10 1 4 11 1 2 12 1 3 13 1 2 14 1 4 15 1 2 3 5
Programs
-
Mathematica
row[n_] := Floor[(Sqrt[8 n+1]-1)/2] oddD[n_] := Select[Divisors[n], OddQ[#]&<=row[n]&] twoExp[n_] := Module[{f=FactorInteger[n]}, If[First[First[f]]==2, Last[First[f]], 0]] dualD[n_] := Select[Map[2^(twoExp[n]+1)#&, oddD[n]], #<=row[n]&] a341970[n_] := Union[oddD[n], dualD[n]] Flatten[Map[a341970, Range[40]]] (* first 40 rows of table *)
Comments