A342011 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), for all i, j >= 1, with f(1) = 2 and f(n) = A004490(n)/A004490(n-1) when n > 1, where A004490(n) is the n-th colossally abundant number.
1, 2, 1, 3, 1, 2, 4, 1, 5, 6, 1, 2, 3, 7, 8, 9, 1, 10, 11, 4, 2, 12, 13, 14, 1, 15, 16, 17, 3, 18, 19, 20, 21, 5, 22, 1, 23, 2, 24, 25, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 1, 35, 36, 4, 37, 38, 39, 7, 40, 41, 42, 43, 44, 45, 46, 8, 47, 2, 48, 49, 50, 3, 51, 52, 53, 54, 1, 55, 56, 57, 58, 59, 60, 61, 62, 9, 63, 64
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (computed from the b-file of A073751 provided by T. D. Noe)
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.
Programs
-
PARI
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; v073751 = readvec("b073751_to.txt"); \\ Prepared with gawk '{ print $2 }' < b073751.txt > b073751_to.txt v342011 = rgs_transform(v073751); A342011(n) = v342011[n]; for(n=1,#v342011,write("b342011.txt", n, " ", A342011(n)));
Comments