A342050 Numbers k which have an odd number of trailing zeros in their primorial base representation A049345(k).
2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 30, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 60, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 90, 92, 94, 98, 100, 104, 106, 110, 112, 116, 118, 120, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 150, 152, 154, 158, 160, 164, 166, 170, 172, 176, 178, 180, 182, 184, 188, 190, 194, 196, 200, 202, 206, 208, 212
Offset: 1
Examples
2 is a term since A049345(2) = 10 has 1 trailing zero. 4 is a term since A049345(2) = 20 has 1 trailing zero. 30 is a term since A049345(2) = 1000 has 3 trailing zeros. From _Gus Wiseman_, Apr 23 2021: (Start) The sequence of terms together with their prime indices begins: 2: {1} 46: {1,9} 90: {1,2,2,3} 4: {1,1} 50: {1,3,3} 92: {1,1,9} 8: {1,1,1} 52: {1,1,6} 94: {1,15} 10: {1,3} 56: {1,1,1,4} 98: {1,4,4} 14: {1,4} 58: {1,10} 100: {1,1,3,3} 16: {1,1,1,1} 60: {1,1,2,3} 104: {1,1,1,6} 20: {1,1,3} 62: {1,11} 106: {1,16} 22: {1,5} 64: {1,1,1,1,1,1} 110: {1,3,5} 26: {1,6} 68: {1,1,7} 112: {1,1,1,1,4} 28: {1,1,4} 70: {1,3,4} 116: {1,1,10} 30: {1,2,3} 74: {1,12} 118: {1,17} 32: {1,1,1,1,1} 76: {1,1,8} 120: {1,1,1,2,3} 34: {1,7} 80: {1,1,1,1,3} 122: {1,18} 38: {1,8} 82: {1,13} 124: {1,1,11} 40: {1,1,1,3} 86: {1,14} 128: {1,1,1,1,1,1,1} 44: {1,1,5} 88: {1,1,1,5} 130: {1,3,6} (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- George E. Andrews and David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
- Brian Hopkins, James A. Sellers, and Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020.
- Wikipedia, Mex (mathematics)
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to primorial base
Crossrefs
Complement of A342051.
A099800 is subsequence.
Analogous sequences: A001950 (Zeckendorf representation), A036554 (binary), A145204 (ternary), A217319 (base 4), A232745 (factorial base).
The version for reversed binary expansion is A079523.
Positions of even terms in A257993.
A000070 counts partitions with a selected part.
A073491 lists numbers with gap-free prime indices.
A079067 counts gaps in prime indices.
A238709 counts partitions by sum and least difference.
A333214 lists positions of adjacent unequal prime gaps.
A339662 gives greatest gap in prime indices.
Programs
-
Mathematica
seq[max_] := Module[{bases = Prime@Range[max, 1, -1], nmax}, nmax = Times @@ bases - 1; Select[Range[nmax], OddQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[bases]], #1 == 0 &] &]]; seq[4] Select[Range[100],EvenQ[Min@@Complement[Range[PrimeNu[#]+1],PrimePi/@First/@FactorInteger[#]]]&] (* Gus Wiseman, Apr 23 2021 *)
-
PARI
A353525(n) = { for(i=1,oo,if(n%prime(i),return((i+1)%2))); } isA342050(n) = A353525(n); k=0; n=0; while(k<77, n++; if(isA342050(n), k++; print1(n,", "))); \\ Antti Karttunen, Apr 25 2022
Extensions
More terms added (to differentiate from A353531) by Antti Karttunen, Apr 25 2022
Comments