cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342062 a(n) is the number of divisors of prime(n)^8 - 1.

Original entry on oeis.org

8, 24, 48, 84, 96, 192, 192, 288, 224, 192, 576, 576, 672, 2304, 1024, 768, 768, 192, 768, 336, 672, 1024, 3072, 1344, 864, 576, 448, 1152, 1536, 512, 2112, 768, 1792, 768, 1152, 1344, 2304, 960, 896, 1536, 1728, 1152, 2560, 1280, 1728, 504, 1536, 2304, 1536
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

a(n) >= 384 for n > 20.

Examples

			   n  prime(n)      factorization of prime(n)^8 - 1      a(n)
  --  --------  ---------------------------------------  ----
   1      2           3   * 5   * 17                        8
   2      3     2^5       * 5   * 41                       24
   3      5     2^5 * 3         * 13 * 313                 48
   4      7     2^6 * 3   * 5^2 * 1201                     84
   5     11     2^5 * 3   * 5   * 61 * 7321                96
   6     13     2^5 * 3   * 5   * 7 * 17 * 14281          192
   7     17     2^7 * 3^2 * 5   * 29 * 41761              192
   8     19     2^5 * 3^2 * 5   * 17 * 181 * 3833         288
   9     23     2^6 * 3   * 5   * 11 * 53 * 139921        224
  10     29     2^5 * 3   * 5   * 7 * 421 * 353641        192
  11     31     2^8 * 3   * 5   * 13 * 37 * 409 * 1129    576
  12     37     2^5 * 3^2 * 5   * 19 * 89 * 137 * 10529   576
  13     41     2^6 * 3   * 5   * 7 * 29^2 * 137 * 10313  672
  ...
  20     71     2^6 * 3^2 * 5   * 7 * 2521 * 12705841     336
		

Crossrefs

Programs

  • Maple
    f:= n -> numtheory:-tau(ithprime(n)^8-1):
    map(f, [$1..100]); # Robert Israel, Feb 28 2021
  • Mathematica
    a[n_] := DivisorSigma[0, Prime[n]^8 - 1]; Array[a, 50] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^8-1); \\ Michel Marcus, Feb 27 2021

Formula

a(n) = A000005(A000040(n)^8 - 1).