A342063
Primes p such that p^8 - 1 has fewer than 384 divisors.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 61, 71
Offset: 1
p =
n a(n) factorization of p^8 - 1 a(n)
-- ---- ------------------------------------- ----
1 2 3 * 5 * 17 8
2 3 2^5 * 5 * 41 24
3 5 2^5 * 3 * 13 * 313 48
4 7 2^6 * 3 * 5^2 * 1201 84
5 11 2^5 * 3 * 5 * 61 * 7321 96
6 13 2^5 * 3 * 5 * 7 * 17 * 14281 192
7 17 2^7 * 3^2 * 5 * 29 * 41761 192
8 19 2^5 * 3^2 * 5 * 17 * 181 * 3833 288
9 23 2^6 * 3 * 5 * 11 * 53 * 139921 224
10 29 2^5 * 3 * 5 * 7 * 421 * 353641 192
11 61 2^5 * 3 * 5 * 31 * 1861 * 6922921 192
12 71 2^6 * 3^2 * 5 * 7 * 2521 * 12705841 336
A342064
Primes p such that p^8 - 1 has 384 divisors.
Original entry on oeis.org
821, 997, 2819, 6619, 17827, 20947, 24917, 42709, 43411, 46141, 49261, 51691, 80077, 108803, 158981, 159539, 161341, 171659, 202667, 228611, 268573, 304477, 315803, 350971, 420781, 447683, 463459, 816709, 848227, 887989, 953773, 991811, 1056829, 1131379
Offset: 1
p =
n a(n) factorization of p^8 - 1
- ----- -----------------------------------------------------
1 821 2^5 * 3 * 5 * 41 * 137 * 337021 * 227165634841
2 997 2^5 * 3 * 5 * 83 * 499 * 99401 * 494026946041
3 2819 2^5 * 3 * 5 * 47 * 1409 * 3973381 * 31575505195561
4 6619 2^5 * 3 * 5 * 331 * 1103 * 21905581 * 959708914083961
Showing 1-2 of 2 results.
Comments