cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342062 a(n) is the number of divisors of prime(n)^8 - 1.

Original entry on oeis.org

8, 24, 48, 84, 96, 192, 192, 288, 224, 192, 576, 576, 672, 2304, 1024, 768, 768, 192, 768, 336, 672, 1024, 3072, 1344, 864, 576, 448, 1152, 1536, 512, 2112, 768, 1792, 768, 1152, 1344, 2304, 960, 896, 1536, 1728, 1152, 2560, 1280, 1728, 504, 1536, 2304, 1536
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

a(n) >= 384 for n > 20.

Examples

			   n  prime(n)      factorization of prime(n)^8 - 1      a(n)
  --  --------  ---------------------------------------  ----
   1      2           3   * 5   * 17                        8
   2      3     2^5       * 5   * 41                       24
   3      5     2^5 * 3         * 13 * 313                 48
   4      7     2^6 * 3   * 5^2 * 1201                     84
   5     11     2^5 * 3   * 5   * 61 * 7321                96
   6     13     2^5 * 3   * 5   * 7 * 17 * 14281          192
   7     17     2^7 * 3^2 * 5   * 29 * 41761              192
   8     19     2^5 * 3^2 * 5   * 17 * 181 * 3833         288
   9     23     2^6 * 3   * 5   * 11 * 53 * 139921        224
  10     29     2^5 * 3   * 5   * 7 * 421 * 353641        192
  11     31     2^8 * 3   * 5   * 13 * 37 * 409 * 1129    576
  12     37     2^5 * 3^2 * 5   * 19 * 89 * 137 * 10529   576
  13     41     2^6 * 3   * 5   * 7 * 29^2 * 137 * 10313  672
  ...
  20     71     2^6 * 3^2 * 5   * 7 * 2521 * 12705841     336
		

Crossrefs

Programs

  • Maple
    f:= n -> numtheory:-tau(ithprime(n)^8-1):
    map(f, [$1..100]); # Robert Israel, Feb 28 2021
  • Mathematica
    a[n_] := DivisorSigma[0, Prime[n]^8 - 1]; Array[a, 50] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^8-1); \\ Michel Marcus, Feb 27 2021

Formula

a(n) = A000005(A000040(n)^8 - 1).

A342063 Primes p such that p^8 - 1 has fewer than 384 divisors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 61, 71
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 27 2021

Keywords

Comments

For all primes p > 71, p^8 - 1 has at least A309906(8)=384 divisors.

Examples

			      p =
   n  a(n)        factorization of p^8 - 1         a(n)
  --  ----  -------------------------------------  ----
   1    2         3   * 5   * 17                      8
   2    3   2^5       * 5   * 41                     24
   3    5   2^5 * 3         * 13 * 313               48
   4    7   2^6 * 3   * 5^2 * 1201                   84
   5   11   2^5 * 3   * 5   * 61 * 7321              96
   6   13   2^5 * 3   * 5   * 7 * 17 * 14281        192
   7   17   2^7 * 3^2 * 5   * 29 * 41761            192
   8   19   2^5 * 3^2 * 5   * 17 * 181 * 3833       288
   9   23   2^6 * 3   * 5   * 11 * 53 * 139921      224
  10   29   2^5 * 3   * 5   * 7 * 421 * 353641      192
  11   61   2^5 * 3   * 5   * 31 * 1861 * 6922921   192
  12   71   2^6 * 3^2 * 5   * 7 * 2521 * 12705841   336
		

Crossrefs

Showing 1-2 of 2 results.