cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158348 Number of n-colorings of the Hypercube Graph Q4.

Original entry on oeis.org

0, 0, 2, 2970, 1321860, 187430900, 10199069190, 269591166222, 4221404762120, 44876701584360, 355148098691850, 2230178955481730, 11630998385335692, 52097117078470620, 205557074788375310, 728566149746575350, 2355657801908655120, 7034253747275048912, 19594719516430397970
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2009

Keywords

Comments

The Hypercube Graph Q4 has 16 vertices and 32 edges.
All terms are even.

Crossrefs

Column k=4 of A342128.

Programs

  • Maple
    a:= n-> n^16 -32*n^15 +496*n^14 -4936*n^13 +35264*n^12 -191600*n^11 +818036*n^10 -2794896*n^9 +7701952*n^8 -17100952*n^7 +30276984*n^6 -41821924*n^5 +43389646*n^4 -31680240*n^3 +14412776*n^2 -3040575*n:
    seq(a(n), n=0..20);

Formula

a(n) = n^16 -32*n^15 + ... (see Maple program).

A380589 Number of n-colorings of the Hypercube Graph Q5.

Original entry on oeis.org

0, 0, 2, 1185282, 130253748108, 2157531034816940, 7905235551766437150, 7365707045872206479742, 2337101560809838105414712, 327425229254999498091796728, 24489214732779742874109277530, 1119349138930999380736025706650, 34471067091433681765512048700932
Offset: 0

Views

Author

Alois P. Heinz, Jan 27 2025

Keywords

Comments

The Hypercube Graph Q5 has 32 vertices and 80 edges.
All terms are even.

Crossrefs

Programs

  • Maple
    a:= n-> (((((((((((((((((((((((((((((((n-80)*n+3160)*n-82080)*n+1575420)*n
        -23805776)*n+294640000)*n-3068289720)*n+27406254870)*n-212981036784)*n
        +1455643449120)*n-8822129447280)*n+47712047044920)*n-231347639674200)*n
        +1009138022379076)*n-3968583456247214)*n+14086095737441185)*n-45124968898112160)*n
        +130327084318442384)*n-338572422663483544)*n+788328935798745052)*n
        -1636781898149840504)*n+3009654466362869780)*n-4856773984500880124)*n
        +6797172300402030636)*n-8122089299204814072)*n+8114599308192145448)*n
        -6584797184952049568)*n+4160914137061367054)*n-1915734714629493936)*n
        +569711421560808713)*n-81768640551939777)*n:
    seq(a(n), n=0..12);

Formula

a(n) = n^32 - 80*n^31 + 3160*n^30 - ... (see Maple program).
Showing 1-2 of 2 results.