cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A334159 Irregular triangle read by rows: T(n,k) is the number of colorings of the n-hypercube graph using exactly k unlabeled colors, k = 1..2^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 1, 18, 92, 146, 80, 16, 1, 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1, 0, 1, 197546, 5427041958, 17973998149410, 10961517110194516, 1450479305675145412, 56507865332978414188
Offset: 0

Views

Author

Andrew Howroyd, Apr 21 2020

Keywords

Examples

			Triangle begins:
0 | 1;
1 | 0, 1;
2 | 0, 1, 2, 1;
3 | 0, 1, 18, 92, 146, 80, 16, 1;
4 | 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1;
		

Crossrefs

A334247 Number of acyclic orientations of the edges of an n-dimensional cube.

Original entry on oeis.org

1, 2, 14, 1862, 193270310, 47171704165698393638
Offset: 0

Views

Author

Matthew Scroggs, Apr 20 2020

Keywords

Comments

a(n) is the absolute value of the chromatic polynomial of the n-hypercube graph evaluated at -1.

Examples

			For n=2, there are 14 ways to orient the edges of a square without cycles (see links).
		

Crossrefs

Cf. A334248 is the number of acyclic orientations with rotations and reflections of the same orientation excluded.
Cf. A033815 (cross-polytope), A058809 (wheel), A338152 (demihypercube), A338153 (prism), A338154 (antiprism).

Programs

  • Maple
    with(GraphTheory): with(SpecialGraphs):
    a:= n-> abs(ChromaticPolynomial(HypercubeGraph(n), -1)):
    seq(a(n), n=0..4);  # Alois P. Heinz, Jan 14 2025

Formula

a(n) = Sum_{k=1..2^n} (-1)^(2^n-k) * k! * A334159(n, k). - Andrew Howroyd, Apr 21 2020
a(n) = |Sum_{k=0..2^n} (-1)^k * A334278(n, k)|. - Peter Kagey, Oct 13 2020

Extensions

a(5) from Andrew Howroyd, Apr 23 2020

A334278 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The sums of the absolute values of the entries in each row gives A334247, the number of acyclic orientations of edges of the n-cube.

Examples

			Table begins:
n/k| 0     1    2     3    4     5   6    7  8
---+-------------------------------------------
  0| 0,    1
  1| 0,   -1,   1
  2| 0,   -3,   6,   -4,   1
  3| 0, -133, 423, -572, 441, -214, 66, -12, 1
		

Crossrefs

Cf. A296914 is the reverse of row 3.
Cf. A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.

Programs

  • Maple
    with(GraphTheory): with(SpecialGraphs):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
        ChromaticPolynomial(HypercubeGraph(n), x)):
    seq(T(n), n=0..4);  # Alois P. Heinz, Jan 14 2025
  • Mathematica
    T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]

Formula

T(n,0) = 0.
T(n,k) = Sum_{i=1..2^n}, Stirling1(i,k) * A334159(n,i). - Andrew Howroyd, Apr 25 2020

A334357 Number of nonequivalent proper colorings of the vertices of a 4D hypercube using at most n colors up to rotations and reflections of the cube.

Original entry on oeis.org

0, 1, 72, 7173, 610160, 28654530, 723903411, 11151501102, 117740542158, 928786063095, 5822688352360, 30338870238171, 135818642249082, 535712216425568, 1898338161488055, 6136965479845740, 18323823959847156, 51039512178104637, 133722394132080528
Offset: 1

Views

Author

Andrew Howroyd, Apr 24 2020

Keywords

Comments

Adjacent vertices may not have the same color.
a(n) is the number of nonequivalent n-colorings of the tesseract graph up to graph isomorphism.

Crossrefs

Formula

a(n) = n*(n - 1)*(n^14 - 31*n^13 + 465*n^12 - 4471*n^11 + 30805*n^10 - 161035*n^9 + 659293*n^8 - 2149343*n^7 + 5610000*n^6 - 11666144*n^5 + 19009100*n^4 - 23485632*n^3 + 20729104*n^2 - 11646800*n + 3125472)/384.
a(n) = Sum_{k=1..16} n^k * A334358(4,16-k) / 384.

A380589 Number of n-colorings of the Hypercube Graph Q5.

Original entry on oeis.org

0, 0, 2, 1185282, 130253748108, 2157531034816940, 7905235551766437150, 7365707045872206479742, 2337101560809838105414712, 327425229254999498091796728, 24489214732779742874109277530, 1119349138930999380736025706650, 34471067091433681765512048700932
Offset: 0

Views

Author

Alois P. Heinz, Jan 27 2025

Keywords

Comments

The Hypercube Graph Q5 has 32 vertices and 80 edges.
All terms are even.

Crossrefs

Programs

  • Maple
    a:= n-> (((((((((((((((((((((((((((((((n-80)*n+3160)*n-82080)*n+1575420)*n
        -23805776)*n+294640000)*n-3068289720)*n+27406254870)*n-212981036784)*n
        +1455643449120)*n-8822129447280)*n+47712047044920)*n-231347639674200)*n
        +1009138022379076)*n-3968583456247214)*n+14086095737441185)*n-45124968898112160)*n
        +130327084318442384)*n-338572422663483544)*n+788328935798745052)*n
        -1636781898149840504)*n+3009654466362869780)*n-4856773984500880124)*n
        +6797172300402030636)*n-8122089299204814072)*n+8114599308192145448)*n
        -6584797184952049568)*n+4160914137061367054)*n-1915734714629493936)*n
        +569711421560808713)*n-81768640551939777)*n:
    seq(a(n), n=0..12);

Formula

a(n) = n^32 - 80*n^31 + 3160*n^30 - ... (see Maple program).

A159191 Number of n-colorings of the Robertson graph.

Original entry on oeis.org

0, 0, 0, 24, 3490848, 3501104400, 564523119840, 31643453033640, 886834653776064, 15220684846368288, 181298924180884800, 1627952400490177080, 11672280987833510880, 69664869701930893104, 357038627052783076128, 1609181428647593728200, 6498071673405936462720
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2009

Keywords

Comments

The Robertson graph is the unique (4,5) cage: the quartic graph on 19 vertices (so 38 edges) with girth 5.

Crossrefs

Programs

  • Maple
    a:= n-> n^19 -38*n^18 +703*n^17 -8436*n^16 +73761*n^15 -500004*n^14 +2727105*n^13 -12246808*n^12 +45913333*n^11 -144701057*n^10 +383839223*n^9 -853388854*n^8 +1574465385*n^7 -2370057775*n^6 +2835163369*n^5 -2587310804*n^4 +1685281636*n^3 -693467820*n^2 +134217080*n:
    seq(a(n), n=0..20);

Formula

a(n) = n^19 -38*n^18 + ... (see Maple program).

A342128 Table read by antidiagonals upwards: T(n,k) is the number of n-colorings of the vertices of the k-dimensional hypercube such that no two adjacent vertices have the same color. n >= 0, k >=0.

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 3, 2, 0, 0, 4, 6, 2, 0, 0, 5, 12, 18, 2, 0, 0, 6, 20, 84, 114, 2, 0, 0, 7, 30, 260, 2652, 2970, 2, 0, 0, 8, 42, 630, 29660, 1321860, 1185282, 2, 0, 0, 9, 56, 1302, 198030, 187430900, 130253748108, 100301050602, 2, 0, 0, 10, 72, 2408, 932862, 10199069190, 2157531034816940
Offset: 0

Views

Author

Peter Kagey, Feb 28 2021

Keywords

Examples

			Table begins:
  n\k|  0   1     2         3                4                              5
  ---+-----------------------------------------------------------------------
   0 |  0   0     0         0                0                              0
   1 |  1   0     0         0                0                              0
   2 |  2   2     2         2                2                              2
   3 |  3   6    18       114             2970                        1185282
   4 |  4  12    84      2652          1321860                   130253748108
   5 |  5  20   260     29660        187430900               2157531034816940
   6 |  6  30   630    198030      10199069190            7905235551766437150
   7 |  7  42  1302    932862     269591166222         7365707045872206479742
   8 |  8  56  2408   3440024    4221404762120      2337101560809838105414712
   9 |  9  72  4104  10599192   44876701584360    327425229254999498091796728
  10 | 10  90  6570  28478970  355148098691850  24489214732779742874109277530
		

Crossrefs

Columns and rows: A002378 (k=1), A091940 (k=2), A140986 (k=3), A158348 (k=4), A380589 (k=5), A307334 (n=3).
Cf. A334278, A342088 (analogous for cross-polytope).

Formula

T(n,k) = Sum_{i=0..2^k} A334278(k,i)*n^i.
Showing 1-7 of 7 results.