A140986
Number of n-colorings of the cubical graph.
Original entry on oeis.org
0, 0, 2, 114, 2652, 29660, 198030, 932862, 3440024, 10599192, 28478970, 68716010, 152040372, 313269684, 608134982, 1122341430, 1983307440, 3375066032, 5556852594, 8885943522, 13845350540, 21077015820, 31421193342, 45962742254, 66085098312, 93532729800
Offset: 0
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Eric Weisstein's World of Mathematics, Cubical Graph
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
a:= n-> n^8 -12*n^7 +66*n^6 -214*n^5 +441*n^4 -572*n^3 +423*n^2 -133*n:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 01 2009
-
A140986(n):=n^8-12*n^7+66*n^6-214*n^5+441*n^4-572*n^3 +423*n^2-133*n$
makelist(A140986(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
A334247
Number of acyclic orientations of the edges of an n-dimensional cube.
Original entry on oeis.org
1, 2, 14, 1862, 193270310, 47171704165698393638
Offset: 0
For n=2, there are 14 ways to orient the edges of a square without cycles (see links).
Cf.
A334248 is the number of acyclic orientations with rotations and reflections of the same orientation excluded.
-
with(GraphTheory): with(SpecialGraphs):
a:= n-> abs(ChromaticPolynomial(HypercubeGraph(n), -1)):
seq(a(n), n=0..4); # Alois P. Heinz, Jan 14 2025
A334278
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.
Original entry on oeis.org
0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0
Table begins:
n/k| 0 1 2 3 4 5 6 7 8
---+-------------------------------------------
0| 0, 1
1| 0, -1, 1
2| 0, -3, 6, -4, 1
3| 0, -133, 423, -572, 441, -214, 66, -12, 1
Cf.
A296914 is the reverse of row 3.
Cf.
A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.
-
with(GraphTheory): with(SpecialGraphs):
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
ChromaticPolynomial(HypercubeGraph(n), x)):
seq(T(n), n=0..4); # Alois P. Heinz, Jan 14 2025
-
T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]
A334358
Irregular triangle read by rows: row n gives scaled coefficients of the chromatic polynomial corresponding to colorings of the n-hypercube graph up to automorphism, highest powers first, 0 <= k <= 2^n.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -2, 3, -2, 0, 1, -12, 72, -256, 579, -812, 644, -216, 0, 1, -32, 496, -4936, 35276, -191840, 820328, -2808636, 7759343, -17276144, 30675244, -42494732, 44214736, -32375904, 14772272, -3125472, 0, 1, -80, 3160, -82080, 1575420, -23805776, 294640000
Offset: 0
Triangle begins:
0 | 1, 0;
1 | 1, -1, 0;
2 | 1, -2, 3, -2, 0;
3 | 1, -12, 72, -256, 579, -812, 644, -216, 0;
...
The corresponding polynomials are:
x;
(x^2 - x)/(1!*2^1);
(x^4 - 2*x^3 + 3*x^2 - 2*x)/(2!*2^2);
(x^8 - 12*x^7 + 72*x^6 - 256*x^5 + 579*x^4 - 812*x^3 + 644*x^2 - 216*x)/(3!*2^3);
...
The polynomial (x^4 - 2*x^3 + 3*x^2 - 2*x)/(2!*2^2) gives A002817 when evaluated at integer values of x.
A296914
List of coefficients of chromatic polynomial of the cubical graph Q_3, highest order terms first.
Original entry on oeis.org
1, -12, 66, -214, 441, -572, 423, -133, 0
Offset: 1
A307334
Number of 3-colorings of an n-dimensional hypercube.
Original entry on oeis.org
3, 6, 18, 114, 2970, 1185282, 100301050602
Offset: 0
- Prateek Bhakta, Benjamin Brett Buckner, Lauren Farquhar, Vikram Kamat, Sara Krehbiel, Heather M. Russell, Cut-Colorings in Coloring Graphs, Graphs and Combinatorics, (2019) 35(1), 239-248.
- Luis Cereceda, Janvan den Heuvel, Matthew Johnson, Connectedness of the graph of vertex-colourings, Discrete Mathematics, (2008) 308(5-6), 913-919.
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Vertex Coloring
- Wikipedia, Chromatic polynomial
- Wikipedia, Hypercube
A295176
Chromatic invariant of the n-hypercube graph.
Original entry on oeis.org
1, 1, 1, 11, 48253, 135327729523895
Offset: 0
A334359
Number of stable partitions of the n-hypercube graph.
Original entry on oeis.org
1, 1, 4, 354, 179185930, 258823757396708888836788
Offset: 0
The a(2) = 4 stable partitions of the 2-dimensional hypercube are:
1---2 1---2 1---2 1---2
| | | | | | | |
2---1 2---3 3---1 3---4
Showing 1-8 of 8 results.
Comments