A334159
Irregular triangle read by rows: T(n,k) is the number of colorings of the n-hypercube graph using exactly k unlabeled colors, k = 1..2^n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 1, 0, 1, 18, 92, 146, 80, 16, 1, 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1, 0, 1, 197546, 5427041958, 17973998149410, 10961517110194516, 1450479305675145412, 56507865332978414188
Offset: 0
Triangle begins:
0 | 1;
1 | 0, 1;
2 | 0, 1, 2, 1;
3 | 0, 1, 18, 92, 146, 80, 16, 1;
4 | 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1;
A334278
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.
Original entry on oeis.org
0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0
Table begins:
n/k| 0 1 2 3 4 5 6 7 8
---+-------------------------------------------
0| 0, 1
1| 0, -1, 1
2| 0, -3, 6, -4, 1
3| 0, -133, 423, -572, 441, -214, 66, -12, 1
Cf.
A296914 is the reverse of row 3.
Cf.
A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.
-
with(GraphTheory): with(SpecialGraphs):
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
ChromaticPolynomial(HypercubeGraph(n), x)):
seq(T(n), n=0..4); # Alois P. Heinz, Jan 14 2025
-
T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]
A334248
Number of distinct acyclic orientations of the edges of an n-dimensional cube.
Original entry on oeis.org
1, 1, 3, 54, 511863, 12284402192625939
Offset: 0
Cf.
A333418.
A334247 is the number of acyclic orientations with rotations and reflections of the same orientation included.
A338153
a(n) is the number of acyclic orientations of the edges of the n-prism.
Original entry on oeis.org
204, 1862, 14700, 109334, 790524, 5633222, 39828300, 280376054, 1968934044, 13807724582, 96754776300, 677686169174, 4745413960764, 33224340503942, 232596153986700, 1628276158432694, 11398345428510684, 79790067272259302, 558537067986067500, 3909785864202510614
Offset: 3
For n = 4, the 4-prism is the 3-dimensional cube, so a(4) = A334247(3) = 1862.
A338154
a(n) is the number of acyclic orientations of the edges of the n-antiprism.
Original entry on oeis.org
426, 4968, 50640, 486930, 4547088, 41796168, 380789562, 3451622904, 31194607488, 281440825122, 2536622917920, 22848990484344, 205743704494026, 1852238413383048, 16673036119790640, 150072652217086770, 1350735146332489008, 12157047307392618408
Offset: 3
For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426.
A338152
a(n) is the number of acyclic orientations of the edges of an n-dimensional demihypercube.
Original entry on oeis.org
1, 2, 24, 24024, 193270310, 767795414400
Offset: 1
-
Table[Abs[ChromaticPolynomial[GraphData[{"HalvedCube",n}]][-1]],{n,1,6}]
A338005
Number of graceful labelings of the n-hypercube graph Q_n.
Original entry on oeis.org
1, 2, 16, 2592, 466308864
Offset: 0
Showing 1-7 of 7 results.
Comments