cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A334159 Irregular triangle read by rows: T(n,k) is the number of colorings of the n-hypercube graph using exactly k unlabeled colors, k = 1..2^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 1, 18, 92, 146, 80, 16, 1, 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1, 0, 1, 197546, 5427041958, 17973998149410, 10961517110194516, 1450479305675145412, 56507865332978414188
Offset: 0

Views

Author

Andrew Howroyd, Apr 21 2020

Keywords

Examples

			Triangle begins:
0 | 1;
1 | 0, 1;
2 | 0, 1, 2, 1;
3 | 0, 1, 18, 92, 146, 80, 16, 1;
4 | 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1;
		

Crossrefs

A334278 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The sums of the absolute values of the entries in each row gives A334247, the number of acyclic orientations of edges of the n-cube.

Examples

			Table begins:
n/k| 0     1    2     3    4     5   6    7  8
---+-------------------------------------------
  0| 0,    1
  1| 0,   -1,   1
  2| 0,   -3,   6,   -4,   1
  3| 0, -133, 423, -572, 441, -214, 66, -12, 1
		

Crossrefs

Cf. A296914 is the reverse of row 3.
Cf. A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.

Programs

  • Maple
    with(GraphTheory): with(SpecialGraphs):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
        ChromaticPolynomial(HypercubeGraph(n), x)):
    seq(T(n), n=0..4);  # Alois P. Heinz, Jan 14 2025
  • Mathematica
    T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]

Formula

T(n,0) = 0.
T(n,k) = Sum_{i=1..2^n}, Stirling1(i,k) * A334159(n,i). - Andrew Howroyd, Apr 25 2020

A334248 Number of distinct acyclic orientations of the edges of an n-dimensional cube.

Original entry on oeis.org

1, 1, 3, 54, 511863, 12284402192625939
Offset: 0

Views

Author

Matthew Scroggs, Apr 20 2020

Keywords

Comments

a(n) is the number of acyclic orientations of the edges of an n-dimensional cube, with rotations and reflections of the same orientation not counted.
Except for n=0 and n=2, a(n) can be obtained by substituting -1 for x in the chromatic polynomials given in A334358. This fails for n = 2 because the square when folded diagonally gives a graph with an odd number of vertices. The contribution from this graph needs to be negated when determining the number of acyclic orientations. - Andrew Howroyd, Apr 24 2020

Crossrefs

Cf. A333418. A334247 is the number of acyclic orientations with rotations and reflections of the same orientation included.
Cf. A334358.

Formula

a(n) = Sum_{k=1..2^n} (-1)^k * A334358(n, 2^n-k)/(n!*2^n) for n >= 3. - Andrew Howroyd, Apr 24 2020

Extensions

a(5) from Andrew Howroyd, Apr 24 2020

A338153 a(n) is the number of acyclic orientations of the edges of the n-prism.

Original entry on oeis.org

204, 1862, 14700, 109334, 790524, 5633222, 39828300, 280376054, 1968934044, 13807724582, 96754776300, 677686169174, 4745413960764, 33224340503942, 232596153986700, 1628276158432694, 11398345428510684, 79790067272259302, 558537067986067500, 3909785864202510614
Offset: 3

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Comments

Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - Ray Chandler, Mar 10 2024

Examples

			For n = 4, the 4-prism is the 3-dimensional cube, so a(4) = A334247(3) = 1862.
		

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (cube), A338152 (n-demihypercube), A338154 (n-antiprism).

Programs

Formula

Conjectures from Colin Barker, Oct 13 2020: (Start)
G.f.: 2*x^3*(102 - 497*x + 742*x^2 - 392*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 7*x)).
a(n) = 14*a(n-1) - 63*a(n-2) + 106*a(n-3) - 56*a(n-4) for n>6.
(End)
a(n) = 5 + 7^n - 2^(n+1) - 2*4^n. - Peter Kagey, Nov 15 2020

A338154 a(n) is the number of acyclic orientations of the edges of the n-antiprism.

Original entry on oeis.org

426, 4968, 50640, 486930, 4547088, 41796168, 380789562, 3451622904, 31194607488, 281440825122, 2536622917920, 22848990484344, 205743704494026, 1852238413383048, 16673036119790640, 150072652217086770, 1350735146332489008, 12157047307392618408
Offset: 3

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Comments

Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - Ray Chandler, Mar 10 2024

Examples

			For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426.
		

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338152 (demihypercube), A338153 (prism).

Programs

  • Mathematica
    A338154[n_] := Round[-2^(1-n)*((7 - Sqrt[13])^n + (7 + Sqrt[13])^n) + 9^n + 5] (* Peter Kagey, Nov 15 2020 *)

Formula

Conjectures from Colin Barker, Oct 13 2020: (Start)
G.f.: 6*x^3*(71 - 379*x + 612*x^2 - 324*x^3) / ((1 - x)*(1 - 9*x)*(1 - 7*x + 9*x^2)).
a(n) = 17*a(n-1) - 88*a(n-2) + 153*a(n-3) - 81*a(n-4) for n>6.
(End)
a(n) = -2^(1-n)*((7-sqrt(13))^n + (7+sqrt(13))^n) + 9^n + 5. - Peter Kagey, Nov 15 2020

A338152 a(n) is the number of acyclic orientations of the edges of an n-dimensional demihypercube.

Original entry on oeis.org

1, 2, 24, 24024, 193270310, 767795414400
Offset: 1

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338153 (prism), A338154 (antiprism).

Programs

  • Mathematica
    Table[Abs[ChromaticPolynomial[GraphData[{"HalvedCube",n}]][-1]],{n,1,6}]

Formula

a(n) = |Sum_{k=0..2^(n-1)} (-1)^k * A334280(n, k)|.

A338005 Number of graceful labelings of the n-hypercube graph Q_n.

Original entry on oeis.org

1, 2, 16, 2592, 466308864
Offset: 0

Views

Author

Eric W. Weisstein, Oct 06 2020

Keywords

Comments

a(4) computed by Bert Dobbelaere

Crossrefs

Cf. A334247.
Showing 1-7 of 7 results.