cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A334278 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The sums of the absolute values of the entries in each row gives A334247, the number of acyclic orientations of edges of the n-cube.

Examples

			Table begins:
n/k| 0     1    2     3    4     5   6    7  8
---+-------------------------------------------
  0| 0,    1
  1| 0,   -1,   1
  2| 0,   -3,   6,   -4,   1
  3| 0, -133, 423, -572, 441, -214, 66, -12, 1
		

Crossrefs

Cf. A296914 is the reverse of row 3.
Cf. A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.

Programs

  • Maple
    with(GraphTheory): with(SpecialGraphs):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
        ChromaticPolynomial(HypercubeGraph(n), x)):
    seq(T(n), n=0..4);  # Alois P. Heinz, Jan 14 2025
  • Mathematica
    T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]

Formula

T(n,0) = 0.
T(n,k) = Sum_{i=1..2^n}, Stirling1(i,k) * A334159(n,i). - Andrew Howroyd, Apr 25 2020

A334248 Number of distinct acyclic orientations of the edges of an n-dimensional cube.

Original entry on oeis.org

1, 1, 3, 54, 511863, 12284402192625939
Offset: 0

Views

Author

Matthew Scroggs, Apr 20 2020

Keywords

Comments

a(n) is the number of acyclic orientations of the edges of an n-dimensional cube, with rotations and reflections of the same orientation not counted.
Except for n=0 and n=2, a(n) can be obtained by substituting -1 for x in the chromatic polynomials given in A334358. This fails for n = 2 because the square when folded diagonally gives a graph with an odd number of vertices. The contribution from this graph needs to be negated when determining the number of acyclic orientations. - Andrew Howroyd, Apr 24 2020

Crossrefs

Cf. A333418. A334247 is the number of acyclic orientations with rotations and reflections of the same orientation included.
Cf. A334358.

Formula

a(n) = Sum_{k=1..2^n} (-1)^k * A334358(n, 2^n-k)/(n!*2^n) for n >= 3. - Andrew Howroyd, Apr 24 2020

Extensions

a(5) from Andrew Howroyd, Apr 24 2020

A334356 Number of nonequivalent proper colorings of the vertices of a cube using at most n colors up to rotations and reflections of the cube.

Original entry on oeis.org

0, 1, 15, 154, 1115, 5955, 24836, 85260, 251154, 655005, 1548085, 3374646, 6876805, 13237679, 24271170, 42667640, 72305556, 118640025, 189179979, 294066610, 446766495, 664893691, 971175920, 1394580804, 1971618950, 2747841525, 3779550801, 5135742990, 6900303529
Offset: 1

Views

Author

Andrew Howroyd, Apr 24 2020

Keywords

Comments

Adjacent vertices may not have the same color.
a(n) is the number of nonequivalent n-colorings of the cubical graph up to graph isomorphism.

Crossrefs

Programs

  • PARI
    a(n) = {n*(n - 1)*(n^6 - 11*n^5 + 61*n^4 - 195*n^3 + 384*n^2 - 428*n + 216)/48}

Formula

a(n) = n*(n - 1)*(n^6 - 11*n^5 + 61*n^4 - 195*n^3 + 384*n^2 - 428*n + 216)/48.
a(n) = Sum_{k=1..8} n^k * A334358(3,8-k) / 48.

A334357 Number of nonequivalent proper colorings of the vertices of a 4D hypercube using at most n colors up to rotations and reflections of the cube.

Original entry on oeis.org

0, 1, 72, 7173, 610160, 28654530, 723903411, 11151501102, 117740542158, 928786063095, 5822688352360, 30338870238171, 135818642249082, 535712216425568, 1898338161488055, 6136965479845740, 18323823959847156, 51039512178104637, 133722394132080528
Offset: 1

Views

Author

Andrew Howroyd, Apr 24 2020

Keywords

Comments

Adjacent vertices may not have the same color.
a(n) is the number of nonequivalent n-colorings of the tesseract graph up to graph isomorphism.

Crossrefs

Formula

a(n) = n*(n - 1)*(n^14 - 31*n^13 + 465*n^12 - 4471*n^11 + 30805*n^10 - 161035*n^9 + 659293*n^8 - 2149343*n^7 + 5610000*n^6 - 11666144*n^5 + 19009100*n^4 - 23485632*n^3 + 20729104*n^2 - 11646800*n + 3125472)/384.
a(n) = Sum_{k=1..16} n^k * A334358(4,16-k) / 384.
Showing 1-4 of 4 results.