A115400
Number of n-colorings of the octahedral graph.
Original entry on oeis.org
0, 0, 0, 6, 96, 780, 4080, 15330, 45696, 115416, 257760, 523710, 987360, 1752036, 2957136, 4785690, 7472640, 11313840, 16675776, 24006006, 33844320, 46834620, 63737520, 85443666, 112987776, 147563400, 190538400, 243471150, 308127456
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Octahedral Graph.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
A334159
Irregular triangle read by rows: T(n,k) is the number of colorings of the n-hypercube graph using exactly k unlabeled colors, k = 1..2^n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 1, 0, 1, 18, 92, 146, 80, 16, 1, 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1, 0, 1, 197546, 5427041958, 17973998149410, 10961517110194516, 1450479305675145412, 56507865332978414188
Offset: 0
Triangle begins:
0 | 1;
1 | 0, 1;
2 | 0, 1, 2, 1;
3 | 0, 1, 18, 92, 146, 80, 16, 1;
4 | 0, 1, 494, 54583, 1507094, 12630906, 40096740, 58031885, 43419502, 18212138, 4498756, 670366, 60220, 3156, 88, 1;
A158348
Number of n-colorings of the Hypercube Graph Q4.
Original entry on oeis.org
0, 0, 2, 2970, 1321860, 187430900, 10199069190, 269591166222, 4221404762120, 44876701584360, 355148098691850, 2230178955481730, 11630998385335692, 52097117078470620, 205557074788375310, 728566149746575350, 2355657801908655120, 7034253747275048912, 19594719516430397970
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
A268283
Number of distinct directed Hamiltonian cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
Original entry on oeis.org
6, 12, 32, 60, 2560
Offset: 1
A334247
Number of acyclic orientations of the edges of an n-dimensional cube.
Original entry on oeis.org
1, 2, 14, 1862, 193270310, 47171704165698393638
Offset: 0
For n=2, there are 14 ways to orient the edges of a square without cycles (see links).
Cf.
A334248 is the number of acyclic orientations with rotations and reflections of the same orientation excluded.
-
with(GraphTheory): with(SpecialGraphs):
a:= n-> abs(ChromaticPolynomial(HypercubeGraph(n), -1)):
seq(a(n), n=0..4); # Alois P. Heinz, Jan 14 2025
A218514
Number of n-colorings of the icosahedral graph.
Original entry on oeis.org
0, 0, 0, 0, 240, 80400, 4012560, 76848240, 825447840, 6005512800, 33014872800, 146953113120, 554770648080, 1835249610480, 5448481998960, 14778817981200, 37135461679680, 87386816771520, 194264943433920, 410876964198720, 831638579799600, 1618744884780240
Offset: 0
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Eric W. Weisstein, Icosahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
A218514(n):=n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170)$
makelist(A218514(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
-
def A218514(n) : return n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170);
A334278
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.
Original entry on oeis.org
0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0
Table begins:
n/k| 0 1 2 3 4 5 6 7 8
---+-------------------------------------------
0| 0, 1
1| 0, -1, 1
2| 0, -3, 6, -4, 1
3| 0, -133, 423, -572, 441, -214, 66, -12, 1
Cf.
A296914 is the reverse of row 3.
Cf.
A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.
-
with(GraphTheory): with(SpecialGraphs):
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
ChromaticPolynomial(HypercubeGraph(n), x)):
seq(T(n), n=0..4); # Alois P. Heinz, Jan 14 2025
-
T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]
A218513
Number of n-colorings of the dodecahedral graph.
Original entry on oeis.org
0, 0, 0, 7200, 168506880, 112603286160, 15108392957760, 775405390866960, 20886647215714560, 353998543659193440, 4231366997071432320, 38508081275604409920, 281586666065022616320, 1720887594454493527920, 9053942417801770507200, 41955877772610102690480
Offset: 0
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See pp. 69-70.
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Eric W. Weisstein, Dodecahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
-
A218513(n):=n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984)$
makelist(A218513(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
-
def A218513(n) : return n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984);
A296914
List of coefficients of chromatic polynomial of the cubical graph Q_3, highest order terms first.
Original entry on oeis.org
1, -12, 66, -214, 441, -572, 423, -133, 0
Offset: 1
A334356
Number of nonequivalent proper colorings of the vertices of a cube using at most n colors up to rotations and reflections of the cube.
Original entry on oeis.org
0, 1, 15, 154, 1115, 5955, 24836, 85260, 251154, 655005, 1548085, 3374646, 6876805, 13237679, 24271170, 42667640, 72305556, 118640025, 189179979, 294066610, 446766495, 664893691, 971175920, 1394580804, 1971618950, 2747841525, 3779550801, 5135742990, 6900303529
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Cubical Graph
- Eric Weisstein's World of Mathematics, Vertex Coloring
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Showing 1-10 of 14 results.
Comments