A268283
Number of distinct directed Hamiltonian cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
Original entry on oeis.org
6, 12, 32, 60, 2560
Offset: 1
A334279
Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the 1-skeleton of the n-dimensional cross polytope, 0 <= k <= 2n.
Original entry on oeis.org
0, 0, 1, 0, -3, 6, -4, 1, 0, -64, 154, -137, 58, -12, 1, 0, -2790, 7467, -7852, 4300, -1346, 244, -24, 1, 0, -205056, 593016, -698250, 448015, -175004, 43608, -6990, 700, -40, 1, 0, -22852200, 70164670, -89812001, 64407806, -29113410, 8790285, -1822164, 260868, -25405, 1610, -60, 1
Offset: 1
Table begins:
n/k| 0 1 2 3 4 5 6 7 8 9 10
---+---------------------------------------------------------------
1| 0 0 1
2| 0 -3 6 -4 1
3| 0 -64 154 -137 58 -12 1
4| 0 -2790 7467 -7852 4300 -1346 244 -24 1
5| 0 -205056 593016 -698250 448015 -175004 43608 -6990 700 -40 1
- Peter Kagey, Table of n, a(n) for n = 1..2600 (first 50 rows)
- Chong-Yun Chao and George A. Novacky Jr., On maximally saturated graphs, Discrete Math., 41 (1982), 139-143.
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Wikipedia, Cross-polytope
- Wikipedia, Turán graph
A334278 is analogous for the n-dimensional hypercube.
A218514
Number of n-colorings of the icosahedral graph.
Original entry on oeis.org
0, 0, 0, 0, 240, 80400, 4012560, 76848240, 825447840, 6005512800, 33014872800, 146953113120, 554770648080, 1835249610480, 5448481998960, 14778817981200, 37135461679680, 87386816771520, 194264943433920, 410876964198720, 831638579799600, 1618744884780240
Offset: 0
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Eric W. Weisstein, Icosahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
A218514(n):=n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170)$
makelist(A218514(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
-
def A218514(n) : return n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170);
A218513
Number of n-colorings of the dodecahedral graph.
Original entry on oeis.org
0, 0, 0, 7200, 168506880, 112603286160, 15108392957760, 775405390866960, 20886647215714560, 353998543659193440, 4231366997071432320, 38508081275604409920, 281586666065022616320, 1720887594454493527920, 9053942417801770507200, 41955877772610102690480
Offset: 0
- N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See pp. 69-70.
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
- Eric W. Weisstein, Dodecahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
-
A218513(n):=n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984)$
makelist(A218513(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
-
def A218513(n) : return n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984);
A334281
Number of n-colorings of the vertices of the 4-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 24, 600, 7560, 61320, 351120, 1515024, 5266800, 15531120, 40308840, 94534440, 204228024, 412284600, 786283680, 1428742560, 2490276960, 4186173024, 6816915000, 10793253240, 16666437480, 25164280680, 37233759024, 54090894000, 77278702800
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Chromatic Polynomial
- Wikipedia, Cross-polytope
- Wikipedia, Turán graph
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
concat([0,0,0,0], Vec(24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Apr 22 2020
A342088
Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 84, 96, 24, 1, 25, 260, 780, 600, 120, 1, 36, 630, 4080, 7560, 4320, 720, 1, 49, 1302, 15330, 61320, 78120, 35280, 5040, 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Offset: 0
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8
---+----------------------------------------------------------
0 | 1
1 | 1, 1
2 | 1, 4, 2
3 | 1, 9, 18, 6
4 | 1, 16, 84, 96, 24
5 | 1, 25, 260, 780, 600, 120
6 | 1, 36, 630, 4080, 7560, 4320, 720
7 | 1, 49, 1302, 15330, 61320, 78120, 35280, 5040
8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
-
T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}]
A342073
Number of n-colorings of the vertices of the 5-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 4320, 78120, 913920, 7575120, 46751040, 224587440, 881591040, 2946869640, 8659691040, 22915652760, 55611279360, 125508233760, 266320172160, 535945217760, 1030028705280, 1901347885080, 3386866301280, 5844714201480, 9803816225280
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 5]], x];
Table[p /. x -> n, {n, 0, 50}]
A342074
Number of n-colorings of the vertices of the 6-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 35280, 866880, 13849920, 158004000, 1347524640, 8866186560, 46496324160, 201705744240, 748737990000, 2444976293760, 7178449299840, 19276199691840, 47983899216960, 111920569776000, 246727594270080, 517702915311120, 1039979954779920
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 6]], x];
Table[p /. x -> n, {n, 0, 50}]
A342075
Number of n-colorings of the vertices of the 7-dimensional cross polytope such that no two adjacent vertices have the same color.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 5040, 322560, 10342080, 216518400, 3261535200, 37026823680, 325474269120, 2264594492160, 12789814237200, 60389186457600, 245221330273920, 877374833287680, 2821277454690240, 8284633867238400, 22503569636419200, 57135310310453760
Offset: 0
- Peter Kagey, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
-
p = ChromaticPolynomial[CompleteGraph[Table[2, 7]], x];
Table[p /. x -> n, {n, 0, 50}]
A212221
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 12, 6, 0, 0, 1, 30, 78, 10, 0, 0, 1, 66, 474, 340, 15, 0, 0, 1, 138, 2238, 4780, 1095, 21, 0, 0, 1, 282, 9546, 46420, 32955, 2856, 28, 0, 0, 1, 570, 38958, 385660, 617775, 168546, 6412, 36
Offset: 1
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
3, 12, 30, 66, 138, 282, 570, ...
6, 78, 474, 2238, 9546, 38958, 155994, ...
10, 340, 4780, 46420, 385660, 2995540, 22666780, ...
15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...
-
P:= proc(n) option remember;
unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m)
*mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q)
end:
A:= (n, k)-> P(k)(n)/(2*n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
Showing 1-10 of 12 results.
Comments