cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A268283 Number of distinct directed Hamiltonian cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).

Original entry on oeis.org

6, 12, 32, 60, 2560
Offset: 1

Views

Author

Melvin Peralta, Jan 29 2016

Keywords

Comments

a(n)/2 is the number of distinct undirected Hamiltonian cycles of the Platonic graph corresponding to a(n).

Crossrefs

Cf. A052762 (tetrahedral graph), A140986 (cubical graph), A115400 (octahedral graph), A218513 (dodecahedral graph), A218514 (icosahedral graph).

A334279 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the 1-skeleton of the n-dimensional cross polytope, 0 <= k <= 2n.

Original entry on oeis.org

0, 0, 1, 0, -3, 6, -4, 1, 0, -64, 154, -137, 58, -12, 1, 0, -2790, 7467, -7852, 4300, -1346, 244, -24, 1, 0, -205056, 593016, -698250, 448015, -175004, 43608, -6990, 700, -40, 1, 0, -22852200, 70164670, -89812001, 64407806, -29113410, 8790285, -1822164, 260868, -25405, 1610, -60, 1
Offset: 1

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

A033815 is the number of acyclic orientations of the n-dimensional cross polytope, which is the absolute value of the chromatic polynomial evaluated at -1.
Sums of absolute values of entries in each row give A033815.
These graphs are chromatically unique, that is, there is no nonisomorphic graph with the same chromatic polynomial.
Conjectures from Peter Kagey, Apr 26 2020: (Start)
T(n,1) = -A161131(2n-1).
T(n,2n-2) = A212689(2n - 1).
T(n,2n-1) = A046092(n-1). (End)

Examples

			Table begins:
n/k| 0       1      2       3      4       5     6     7   8   9 10
---+---------------------------------------------------------------
  1| 0       0      1
  2| 0      -3      6      -4      1
  3| 0     -64    154    -137     58     -12     1
  4| 0   -2790   7467   -7852   4300   -1346   244   -24   1
  5| 0 -205056 593016 -698250 448015 -175004 43608 -6990 700 -40  1
		

Crossrefs

A334278 is analogous for the n-dimensional hypercube.

A218514 Number of n-colorings of the icosahedral graph.

Original entry on oeis.org

0, 0, 0, 0, 240, 80400, 4012560, 76848240, 825447840, 6005512800, 33014872800, 146953113120, 554770648080, 1835249610480, 5448481998960, 14778817981200, 37135461679680, 87386816771520, 194264943433920, 410876964198720, 831638579799600, 1618744884780240
Offset: 0

Views

Author

Eric M. Schmidt, Oct 31 2012

Keywords

References

  • N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.

Crossrefs

Programs

  • Maxima
    A218514(n):=n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170)$
    makelist(A218514(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
  • Sage
    def A218514(n) : return n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170);
    

Formula

a(n) = n(n-1)(n-2)(n-3)(n^8 -24n^7 +260n^6 -1670n^5 +6999n^4 -19698n^3 +36408n^2 -40240n +20170).
Hence a(n) = n^12 - 30*n^11 + 415*n^10 - 3500*n^9 + 20023*n^8 - 81622*n^7 + 241605*n^6 - 517360*n^5 + 780286*n^4 - 782108*n^3 + 463310*n^2 - 121020*n (cf. A296917) - N. J. A. Sloane, Dec 23 2017
G.f.: -240*x^4*(12547*x^8 +131518*x^7 +481078*x^6 +743494*x^5 +485740*x^4 +128698*x^3 +12442*x^2 +322*x +1)/(x-1)^13. [Colin Barker, Nov 06 2012]

A218513 Number of n-colorings of the dodecahedral graph.

Original entry on oeis.org

0, 0, 0, 7200, 168506880, 112603286160, 15108392957760, 775405390866960, 20886647215714560, 353998543659193440, 4231366997071432320, 38508081275604409920, 281586666065022616320, 1720887594454493527920, 9053942417801770507200, 41955877772610102690480
Offset: 0

Views

Author

Eric M. Schmidt, Oct 31 2012

Keywords

References

  • N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See pp. 69-70.

Crossrefs

Programs

  • Maxima
    A218513(n):=n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984)$
    makelist(A218513(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
  • Sage
    def A218513(n) : return n*(n-1)*(n-2)*(n^17 -27*n^16 +352*n^15 -2950*n^14 +17839*n^13 -82777*n^12 +305866*n^11 -921448*n^10 +2297495*n^9 -4783425*n^8 +8347700*n^7 -12195590*n^6 +14808795*n^5 -14713381*n^4 +11613602*n^3 -6892084*n^2 +2751604*n -555984);
    

Formula

a(n) = n(n-1)(n-2)(n^17 - 27n^16 + 352n^15 - 2950n^14 + 17839n^13 - 82777n^12 + 305866n^11 - 921448n^10 + 2297495n^9 - 4783425n^8 + 8347700n^7 - 12195590n^6 + 14808795n^5 - 14713381n^4 + 11613602n^3 - 6892084n^2 + 2751604n - 555984).
See A296919 for the coefficients of the expanded form of a(n). - N. J. A. Sloane, Dec 23 2017
G.f.: -240*x^3*(2007273*x^17 +678113783*x^16 +62897280675*x^15 +2149103163405*x^14 +32571452423195*x^13 +246267894384141*x^12 +1000326687571911*x^11 +2283861589692665*x^10 +3002531231655465*x^9 +2288662487004975*x^8 +1001857651156729*x^7 +244960098705399*x^6 +31779760521705*x^5 +2006465657455*x^4 +53246253405*x^3 +454442307*x^2 +701482*x +30)/(x-1)^21. - Colin Barker, Nov 06 2012

A334281 Number of n-colorings of the vertices of the 4-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 24, 600, 7560, 61320, 351120, 1515024, 5266800, 15531120, 40308840, 94534440, 204228024, 412284600, 786283680, 1428742560, 2490276960, 4186173024, 6816915000, 10793253240, 16666437480, 25164280680, 37233759024, 54090894000, 77278702800
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The 4-dimensional cross-polytope is sometimes called the 16-cell. It is one of the six convex regular 4-polytopes.

Crossrefs

Cf. A091940 (2-dimensional), A115400 (3-dimensional).
Cf. A334279.

Programs

  • PARI
    concat([0,0,0,0], Vec(24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Apr 22 2020

Formula

a(n) = n*(n - 1)*(n - 2)*(n - 3)*(465 - 392n + 125n^2 - 18n^3 + n^4).
a(n) = -2790n + 7467n^2 - 7852n^3 + 4300n^4 - 1346n^5 + 244n^6 - 24n^7 + n^8.
From Colin Barker, Apr 22 2020: (Start)
G.f.: 24*x^4*(1 + 16*x + 126*x^2 + 536*x^3 + 1001*x^4) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)

A342088 Triangle read by rows: T(n,k) is the number of n-colorings of the vertices of the k-dimensional cross polytope such that no two adjacent vertices have the same color. 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 84, 96, 24, 1, 25, 260, 780, 600, 120, 1, 36, 630, 4080, 7560, 4320, 720, 1, 49, 1302, 15330, 61320, 78120, 35280, 5040, 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Examples

			Triangle begins:
  n\k| 0   1     2      3       4       5       6       7      8
  ---+----------------------------------------------------------
   0 | 1
   1 | 1,  1
   2 | 1,  4,    2
   3 | 1,  9,   18,     6
   4 | 1, 16,   84,    96,     24
   5 | 1, 25,  260,   780,    600,    120
   6 | 1, 36,  630,  4080,   7560,   4320,    720
   7 | 1, 49, 1302, 15330,  61320,  78120,  35280,   5040
   8 | 1, 64, 2408, 45696, 351120, 913920, 866880, 322560, 40320
		

Crossrefs

Cf. A000012 (k=0), A000290 (k=1), A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342074 (k=6), A342075 (k=7).
Cf. A334279.

Programs

  • Mathematica
    T[n_, k_] := Sum[n! k!/((n - k - j)! (k - j)! j!), {j, 0, k}]

Formula

T(n,n) = n!.
T(n,k) = Sum_{i=0..2*k} A334279(k,i)*n^i.
T(n,k) = n*T(n-1,k-1) + n*(n-1)*T(n-2,k-1).
T(n,k) = Sum_{j=0..k} n!k!/((n-k-j)!(k-j)!j!).

A342073 Number of n-colorings of the vertices of the 5-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 4320, 78120, 913920, 7575120, 46751040, 224587440, 881591040, 2946869640, 8659691040, 22915652760, 55611279360, 125508233760, 266320172160, 535945217760, 1030028705280, 1901347885080, 3386866301280, 5844714201480, 9803816225280
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Crossrefs

Analogous for k-dimensional cross polytope: A091940 (k=2), A115400 (k=3), A334281 (k=4), A342074 (k=6), A342075 (k=7)

Programs

  • Mathematica
    p = ChromaticPolynomial[CompleteGraph[Table[2, 5]], x];
    Table[p /. x -> n, {n, 0, 50}]

Formula

a(n) = -205056*n + 593016*n^2 - 698250*n^3 + 448015*n^4 - 175004*n^5 + 43608*n^6 - 6990*n^7 + 700*n^8 - 40*n^9 + n^10.
a(n) = (n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(-8544 + 6909*n - 2240*n^2 + 365*n^3 - 30*n^4 + n^5).
a(n) = Sum_{i=1..10} A334279(5,i)*n^i.
From Chai Wah Wu, Jan 19 2024: (Start)
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n > 10.
G.f.: x^5*(-2170680*x^5 - 1145400*x^4 - 272400*x^3 - 37200*x^2 - 3000*x - 120)/(x - 1)^11. (End)

A342074 Number of n-colorings of the vertices of the 6-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 35280, 866880, 13849920, 158004000, 1347524640, 8866186560, 46496324160, 201705744240, 748737990000, 2444976293760, 7178449299840, 19276199691840, 47983899216960, 111920569776000, 246727594270080, 517702915311120, 1039979954779920
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Crossrefs

Analogous for k-dimensional cross polytope: A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342075 (k=7).

Programs

  • Mathematica
    p = ChromaticPolynomial[CompleteGraph[Table[2, 6]], x];
    Table[p /. x -> n, {n, 0, 50}]

Formula

a(n) = -22852200*n + 70164670*n^2 - 89812001*n^3 + 64407806*n^4 - 29113410*n^5 + 8790285*n^6 - 1822164*n^7 + 260868*n^8 - 25405*n^9 + 1610*n^10 - 60*n^11 + n^12.
a(n) = (n - 5)*(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(190435 - 149879*n + 49144*n^2 - 8605*n^3 + 850*n^4 - 45*n^5 + n^6).
a(n) = Sum_{i=1..12} A334279(6,i)*n^i.
From Chai Wah Wu, Jan 19 2024: (Start)
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13) for n > 12.
G.f.: x^6*(-287250480*x^6 - 150137280*x^5 - 35996400*x^4 - 5126400*x^3 - 464400*x^2 - 25920*x - 720)/(x - 1)^13. (End)

A342075 Number of n-colorings of the vertices of the 7-dimensional cross polytope such that no two adjacent vertices have the same color.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 322560, 10342080, 216518400, 3261535200, 37026823680, 325474269120, 2264594492160, 12789814237200, 60389186457600, 245221330273920, 877374833287680, 2821277454690240, 8284633867238400, 22503569636419200, 57135310310453760
Offset: 0

Views

Author

Peter Kagey, Feb 27 2021

Keywords

Crossrefs

Analogous for k-dimensional cross polytope: A091940 (k=2), A115400 (k=3), A334281 (k=4), A342073 (k=5), A342074 (k=6).

Programs

  • Mathematica
    p = ChromaticPolynomial[CompleteGraph[Table[2, 7]], x];
    Table[p /. x -> n, {n, 0, 50}]

Formula

a(n) = -3597143040*n + 11590795728*n^2 - 15837356724*n^3 + 12355698460*n^4 - 6212542175*n^5 + 2144307578*n^6 - 526197678*n^7 + 93450369*n^8 - 12064836*n^9 + 1122618*n^10 - 73423*n^11 + 3206*n^12 - 84*n^13 + n^14.
a(n) = (n - 6)*(n - 5)*(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(n^7 - 63 n^6 + 1708 n^5 - 25795 n^4 + 234094 n^3 - 1275281 n^2 + 3858049 n - 4996032).
a(n) = Sum_{i=1..14} A334279(7,i)*n^i.
From Chai Wah Wu, Jan 19 2024: (Start)
a(n) = 15*a(n-1) - 105*a(n-2) + 455*a(n-3) - 1365*a(n-4) + 3003*a(n-5) - 5005*a(n-6) + 6435*a(n-7) - 6435*a(n-8) + 5005*a(n-9) - 3003*a(n-10) + 1365*a(n-11) - 455*a(n-12) + 105*a(n-13) - 15*a(n-14) + a(n-15) for n > 14.
G.f.: x^7*(-52370755920*x^7 - 27190754640*x^6 - 6557740560*x^5 - 959792400*x^4 - 92962800*x^3 - 6032880*x^2 - 246960*x - 5040)/(x - 1)^15. (End)

A212221 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 12, 6, 0, 0, 1, 30, 78, 10, 0, 0, 1, 66, 474, 340, 15, 0, 0, 1, 138, 2238, 4780, 1095, 21, 0, 0, 1, 282, 9546, 46420, 32955, 2856, 28, 0, 0, 1, 570, 38958, 385660, 617775, 168546, 6412, 36
Offset: 1

Views

Author

Alois P. Heinz, May 06 2012

Keywords

Comments

The complete tripartite graph K_(n,n,n) has 3*n vertices and 3*n^2 = A033428(n) edges; see A212220 for example. The chromatic polynomial of K_(n,n,n) has 3*n+1 = A016777(n) coefficients.

Examples

			Square array A(n,k) begins:
   0,    0,     0,      0,       0,         0,          0, ...
   0,    0,     0,      0,       0,         0,          0, ...
   1,    1,     1,      1,       1,         1,          1, ...
   3,   12,    30,     66,     138,       282,        570, ...
   6,   78,   474,   2238,    9546,     38958,     155994, ...
  10,  340,  4780,  46420,  385660,   2995540,   22666780, ...
  15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...
		

Crossrefs

Rows 1+2,3-4 give: A000004, A000012, A089143(n-1) = 1/2*A182464(n-2) = 1/3*A182467(n-2).
Columns 1-2 give: A000217(n-2), 1/(2*n)*A115400(n).

Programs

  • Maple
    P:= proc(n) option remember;
          unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m)
           *mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q)
        end:
    A:= (n, k)-> P(k)(n)/(2*n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

Formula

A(n,k) = 1/(2*n) * Sum_{j,m=1..k} S2(k,j) * S2(k,m) * (n-j-m)^k * Product_{i=0..j+m-1} (n-i) with S2 = A008277.
A(n,n) = A282247(n).
Showing 1-10 of 12 results. Next