cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342134 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - 2*k*x - k*x^2).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 6, 18, 12, 0, 1, 8, 39, 80, 29, 0, 1, 10, 68, 252, 356, 70, 0, 1, 12, 105, 576, 1629, 1584, 169, 0, 1, 14, 150, 1100, 4880, 10530, 7048, 408, 0, 1, 16, 203, 1872, 11525, 41344, 68067, 31360, 985, 0, 1, 18, 264, 2940, 23364, 120750, 350272, 439992, 139536, 2378, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2021

Keywords

Examples

			Square array begins:
  1,  1,    1,     1,     1,      1, ...
  0,  2,    4,     6,     8,     10, ...
  0,  5,   18,    39,    68,    105, ...
  0, 12,   80,   252,   576,   1100, ...
  0, 29,  356,  1629,  4880,  11525, ...
  0, 70, 1584, 10530, 41344, 120750, ...
		

Crossrefs

Columns 0..5 give A000007, A000129(n+1), A090017(n+1), A090018, A190510(n+1), A190955(n+1).
Rows 0..2 give A000012, A005843, A007742.
Main diagonal gives A109517(n+1).

Programs

  • Maple
    T:= (n, k)-> (<<0|1>, >^(n+1))[1, 2]:
    seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, (2*k)^j] * 2^(j - n) * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    T(n, k) = sum(j=0, n\2, (2*k)^(n-j)*2^(-j)*binomial(n-j, j));
    
  • PARI
    T(n, k) = sum(j=0, n, (2*k)^j*2^(j-n)*binomial(j, n-j));
    
  • PARI
    T(n, k) = round((-sqrt(k)*I)^n*polchebyshev(n, 2, sqrt(k)*I));

Formula

T(0,k) = 1, T(1,k) = 2*k and T(n,k) = k*(2*T(n-1,k) + T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} (2*k)^(n-j) * (1/2)^j * binomial(n-j,j) = Sum_{j=0..n} (2*k)^j * (1/2)^(n-j) * binomial(j,n-j).
T(n,k) = (-sqrt(k)*i)^n * U(n, sqrt(k)*i) where U(n, x) is a Chebyshev polynomial of the second kind.