A342161 Expansion of the exponential generating function (tanh(x) - sech(x) + 1) * exp(x).
0, 1, 3, 4, -3, -14, 63, 274, -1383, -7934, 50523, 353794, -2702763, -22368254, 199360983, 1903757314, -19391512143, -209865342974, 2404879675443, 29088885112834, -370371188237523, -4951498053124094, 69348874393137903, 1015423886506852354, -15514534163557086903
Offset: 0
Keywords
Links
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26. See Section 6 (zeroth column of matrix b_{n,k} on p. 19).
Programs
-
Maple
series((2*exp(x)-2)/(exp(-2*x)+1),x,30):seq(n!*coeff(%,x,n),n=0..24); # Peter Luschny, Mar 05 2021
-
PARI
my(x='x+O('x^30)); concat(0, Vec(serlaplace((-1/cosh(x) + tanh(x) + 1)*exp(x)))) \\ Michel Marcus, Mar 05 2021
-
SageMath
def A323834List(prec): R.
= PowerSeriesRing(QQ, default_prec=prec) f = (2*exp(2*x)*(exp(x) - 1))/(exp(2*x) + 1) return f.egf_to_ogf().list() print(A323834List(25)) # Peter Luschny, Mar 05 2021