cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342163 a(n) is the number of numbers greater than 1 and up to prime(n)^2 whose prime factors are all less than or equal to prime(n).

Original entry on oeis.org

2, 6, 15, 29, 60, 87, 137, 176, 247, 360, 422, 568, 689, 776, 923, 1136, 1369, 1494, 1764, 1978, 2128, 2451, 2710, 3074, 3562, 3870, 4077, 4411, 4638, 4995, 6026, 6426, 6987, 7271, 8180, 8493, 9134, 9802, 10319, 11030, 11767, 12139, 13314, 13712, 14329, 14742
Offset: 1

Views

Author

Dimitris Valianatos, Mar 03 2021

Keywords

Examples

			For n=3, prime(3) = 5. Then the numbers up to 5^2 = 25 that have prime factors <= 5 are 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25. So a(3) = 15.
		

Crossrefs

Programs

  • Maple
    A[1]:= 2: p:= 2: P:= 1:
    f:= proc(n) local x,y;
      x:= n;
      do
        y:= igcd(x,P);
        x:= x/y;
        if x = 1 then return true fi;
        if y = 1 then return false fi
      od;
    end proc:
    for nn from 2 to 100 do
      q:= p; p:= nextprime(p); P:= P*q;
      A[nn]:= A[nn-1] + p + numboccur(true,map(f, [$q^2+1 .. p^2-1]))
    od:
    seq(A[i],i=1..100); # Robert Israel, Apr 06 2021
  • Mathematica
    Block[{nn = 46, w}, w = Array[FactorInteger[#][[All, 1]] &, Prime[nn]^2]; Table[-1 + Count[w[[1 ;; p^2]], ?(AllTrue[#, # <= p &] &)], {p, Prime@ Range@ nn}]] (* _Michael De Vlieger, Mar 13 2021 *)
  • PARI
    forprime(n = 2, prime(35), i = 0; for(k = 2, n^2, v = factor(k)~[1,]; if(vecmax(v) <= n, i++)); print1(i", "))
    
  • PARI
    a(n) = my(p=prime(n)); sum(k=2, p^2, vecmax(factor(k)[,1]) <= p); \\ Michel Marcus, Mar 03 2021

Formula

a(n) = A184677(n) - 1.

Extensions

Definition clarified by Robert Israel, Apr 06 2021