A342163 a(n) is the number of numbers greater than 1 and up to prime(n)^2 whose prime factors are all less than or equal to prime(n).
2, 6, 15, 29, 60, 87, 137, 176, 247, 360, 422, 568, 689, 776, 923, 1136, 1369, 1494, 1764, 1978, 2128, 2451, 2710, 3074, 3562, 3870, 4077, 4411, 4638, 4995, 6026, 6426, 6987, 7271, 8180, 8493, 9134, 9802, 10319, 11030, 11767, 12139, 13314, 13712, 14329, 14742
Offset: 1
Keywords
Examples
For n=3, prime(3) = 5. Then the numbers up to 5^2 = 25 that have prime factors <= 5 are 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25. So a(3) = 15.
Links
- Robert Israel, Table of n, a(n) for n = 1..4000
Programs
-
Maple
A[1]:= 2: p:= 2: P:= 1: f:= proc(n) local x,y; x:= n; do y:= igcd(x,P); x:= x/y; if x = 1 then return true fi; if y = 1 then return false fi od; end proc: for nn from 2 to 100 do q:= p; p:= nextprime(p); P:= P*q; A[nn]:= A[nn-1] + p + numboccur(true,map(f, [$q^2+1 .. p^2-1])) od: seq(A[i],i=1..100); # Robert Israel, Apr 06 2021
-
Mathematica
Block[{nn = 46, w}, w = Array[FactorInteger[#][[All, 1]] &, Prime[nn]^2]; Table[-1 + Count[w[[1 ;; p^2]], ?(AllTrue[#, # <= p &] &)], {p, Prime@ Range@ nn}]] (* _Michael De Vlieger, Mar 13 2021 *)
-
PARI
forprime(n = 2, prime(35), i = 0; for(k = 2, n^2, v = factor(k)~[1,]; if(vecmax(v) <= n, i++)); print1(i", "))
-
PARI
a(n) = my(p=prime(n)); sum(k=2, p^2, vecmax(factor(k)[,1]) <= p); \\ Michel Marcus, Mar 03 2021
Formula
a(n) = A184677(n) - 1.
Extensions
Definition clarified by Robert Israel, Apr 06 2021