cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342178 Product of first n central Delannoy numbers.

Original entry on oeis.org

1, 3, 39, 2457, 788697, 1327377051, 11931792311439, 580350446236081521, 154215943727867706493809, 225550533306461376412704772467, 1826384842574005591817185497927226551, 82272644789290466599017454496002856892236169
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, 1,
          (3*(2*n-1)*b(n-1) -(n-1)*b(n-2))/n)
        end:
    a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 04 2021
  • Mathematica
    Table[Product[Hypergeometric2F1[-k, k+1, 1, -1], {k, 1, n}], {n, 0, 15}]
    FoldList[Times, 1, Table[Hypergeometric2F1[-n, n + 1, 1, -1], {n, 1, 15}]]
  • PARI
    D(n) = sum(k=0, n, binomial(n, k)*binomial(n+k, k)); \\ A001850
    a(n) = prod(k=0, n, D(k)); \\ Michel Marcus, Mar 04 2021

Formula

a(n) = Product_{k=1..n} A001850(k).
a(n) ~ c * (1 + sqrt(2))^(n*(n+2)) * exp(n/2) / (2^((5*n+1)/4) * Pi^(n/2 + 1/4) * n^((n+1)/2 - 3/(16*sqrt(2)))), where c = 0.9486848745280397752870611535632702994491680306036912732565033220352175749...