A342196
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^2 * a(k-1).
Original entry on oeis.org
1, 1, 5, 23, 155, 1355, 14371, 183911, 2781283, 48726355, 976903875, 22183097191, 565060532965, 16016170519017, 501714014484813, 17265124180702953, 649178961366102597, 26544344366333824055, 1175291769917975444817, 56133021061270139242637, 2881893164859601701738005
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A342197
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^3 * a(k-1).
Original entry on oeis.org
1, 1, 9, 63, 919, 18919, 505639, 18602319, 877402487, 51212704151, 3688010412503, 321523601578079, 33283248550719793, 4050897039400696253, 574469890816237292037, 93943844587040615104177, 17565329004174205621822169, 3730161837629377369026433019
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^3 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 17}]
A342199
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^5 * a(k-1).
Original entry on oeis.org
1, 1, 33, 519, 43111, 5068111, 840782023, 291086377719, 139698959369111, 90748115988081551, 90809507057803456103, 124011515918275951611959, 217278911997171247450862041, 509237348184229328050319432621, 1567286639251140454692258569881053
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^5 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 14}]
Showing 1-3 of 3 results.