A342196
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^2 * a(k-1).
Original entry on oeis.org
1, 1, 5, 23, 155, 1355, 14371, 183911, 2781283, 48726355, 976903875, 22183097191, 565060532965, 16016170519017, 501714014484813, 17265124180702953, 649178961366102597, 26544344366333824055, 1175291769917975444817, 56133021061270139242637, 2881893164859601701738005
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A342197
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^3 * a(k-1).
Original entry on oeis.org
1, 1, 9, 63, 919, 18919, 505639, 18602319, 877402487, 51212704151, 3688010412503, 321523601578079, 33283248550719793, 4050897039400696253, 574469890816237292037, 93943844587040615104177, 17565329004174205621822169, 3730161837629377369026433019
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^3 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 17}]
A342198
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^4 * a(k-1).
Original entry on oeis.org
1, 1, 17, 179, 6083, 298583, 20015947, 2214261035, 332014246747, 64923646898023, 17220997162396851, 5898373172881341811, 2513698997312409032785, 1335813901379210302030497, 875400777321767437156156305, 692119702624591542667897216641, 653524900495231808524498551469617
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^4 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 16}]
Showing 1-3 of 3 results.