A342208 Number of Frobenius partitions of 2*n that satisfy the condition that the sum of the entries on the top row plus the number of columns is less than or equal to the sum of the entries on the bottom row.
1, 2, 5, 9, 18, 32, 57, 95, 162, 261, 418, 659, 1016, 1555, 2347, 3499, 5152, 7558, 10914, 15704, 22363, 31684, 44460, 62161, 86191, 119026, 163282, 223015, 302854, 409809, 551477, 739370, 987091, 1312752, 1739064, 2295880, 3020066, 3959580, 5175156, 6742034
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Kelsey Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7. [Given a(10) is incorrect.]
Programs
-
PARI
\\ by partitions a(n)={my(total=0); forpart(q=2*n, my(p=Vecrev(q), m=0, s=0); while(m<#p && p[m+1]>m, m++; s+=p[m]-m); if(s + m <= n, total++) ); total} \\ Andrew Howroyd, Jan 03 2024
-
PARI
\\ faster version using g.f.'s a(n)=sum(m=1, sqrtint(2*n), my(r=2*n-m^2); my(g=1/prod(k=1, m, 1 - x^k + O(x*x^r))); sum(i=0, n-binomial(m+1,2), polcoef(g,i)*polcoef(g,r-i)) ) \\ Andrew Howroyd, Jan 03 2024
Formula
Extensions
Corrected and extended by Andrew Howroyd, Jan 03 2024