A342229 Total sum of parts which are cubes in all partitions of n.
0, 1, 2, 4, 7, 12, 19, 30, 53, 75, 113, 163, 235, 328, 461, 628, 868, 1163, 1564, 2069, 2743, 3578, 4674, 6036, 7795, 9962, 12728, 16151, 20441, 25714, 32290, 40332, 50292, 62405, 77288, 95339, 117382, 143987, 176298, 215168, 262121, 318385, 386043, 466838, 563577, 678712
Offset: 0
Keywords
Examples
For n = 4 we have: -------------------------------- Partitions Sum of parts . which are cubes -------------------------------- 4 ................... 0 3 + 1 ............... 1 2 + 2 ............... 0 2 + 1 + 1 ........... 2 1 + 1 + 1 + 1 ....... 4 -------------------------------- Total ............... 7 So a(4) = 7.
Programs
-
Mathematica
nmax = 45; CoefficientList[Series[Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x] Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/3)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}]