cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342229 Total sum of parts which are cubes in all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 19, 30, 53, 75, 113, 163, 235, 328, 461, 628, 868, 1163, 1564, 2069, 2743, 3578, 4674, 6036, 7795, 9962, 12728, 16151, 20441, 25714, 32290, 40332, 50292, 62405, 77288, 95339, 117382, 143987, 176298, 215168, 262121, 318385, 386043, 466838, 563577, 678712
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2021

Keywords

Examples

			For n = 4 we have:
--------------------------------
Partitions        Sum of parts
.               which are cubes
--------------------------------
4 ................... 0
3 + 1 ............... 1
2 + 2 ............... 0
2 + 1 + 1 ........... 2
1 + 1 + 1 + 1 ....... 4
--------------------------------
Total ............... 7
So a(4) = 7.
		

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}]/Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[DivisorSum[k, # &, IntegerQ[#^(1/3)] &] PartitionsP[n - k], {k, 1, n}], {n, 0, 45}]

Formula

G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)) / Product_{j>=1} (1 - x^j).
a(n) = Sum_{k=1..n} A113061(k) * A000041(n-k).