A342234 a(n) = (27^n - 9^n)/2 - 12^n + 6^n.
0, 3, 216, 7965, 243000, 6903873, 190505196, 5192233245, 140764942800, 3807455329593, 102881965757076, 2778771947174325, 75038262510065400, 2026169325431888913, 54708199287259567356, 1477140843778461200205, 39883035730488375376800, 1076844754605007952329833
Offset: 0
Links
- M. Almeida, N. Moreira, and R. Reis, Enumeration and generation with a string automata representation, Theor. Comp. Sci. 387 (2007), 93-102; see B(k=3,n).
- Valery A. Liskovets, The number of connected initial automata, Kibernetika (Kiev), 3 (1969), 16-19 (in Russian; English translation: Cybernetics, 4 (1969), 259-262).
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
- Robert W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. [Annotated scanned copy, with permission of the author.]
- Index entries for linear recurrences with constant coefficients, signature (54,-963,6966,-17496).
Programs
-
PARI
lista(nn) = {my(h=matrix(nn+3,nn+3)); my(H=vector(nn+1)); for(N=1, nn, for(M=1, nn, h[N,M] = if(M==1, 1, M^(N*M)-sum(t=1,M-1, binomial(M-1, t-1)*M^(N*(M-t))*h[N,t])))); for(N=1, nn+1, H[N] = if(N==1, 0, h[N-1,3]/2)); H;}
Formula
G.f.: 3*x*(1 + 18*x - 270*x^2)/(1 - 54*x + 963*x^2 - 6966*x^3 + 17496*x^4). - Stefano Spezia, Mar 08 2021
Comments