A342258 Numbers k such that Omega(k-1) = Omega(k)-1 and Omega(k+1) = Omega(k)+1, where Omega is the number of prime divisors counted with multiplicity, A001222.
62, 74, 188, 194, 195, 275, 278, 363, 398, 422, 423, 483, 494, 495, 614, 662, 663, 747, 758, 764, 782, 867, 1028, 1071, 1094, 1095, 1235, 1238, 1268, 1394, 1419, 1454, 1658, 1659, 1682, 1844, 1910, 1916, 1955, 1970, 2043, 2067, 2138, 2139, 2223, 2235, 2247, 2259
Offset: 1
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10001
Programs
-
Mathematica
seq[nmax_] := Module[{om}, om[n_] := om[n] = PrimeOmega[n]; Select[Range[2, nmax], om[# - 1] == om[#] - 1 && om[# + 1] == om[#] + 1 &]]; seq[2500] (* Amiram Eldar, Sep 19 2024 *)
-
PARI
for(n=3,2300,my(bO=bigomega(n));if(bigomega(n-1)==bO-1&&bigomega(n+1)==bO+1,print1(n,", ")))