A342259 Numbers k such that omega(k-1) = omega(k)-1 and omega(k+1) = omega(k)+1, where omega(m) is the number of distinct primes dividing m, A001221(m).
65, 104, 129, 164, 194, 272, 284, 314, 344, 384, 398, 464, 524, 608, 614, 626, 662, 692, 734, 758, 824, 968, 1025, 1094, 1172, 1238, 1280, 1304, 1364, 1424, 1448, 1454, 1532, 1544, 1595, 1658, 1664, 1682, 1724, 1754, 1832, 1868, 1869, 1934, 1952, 2000, 2001, 2012
Offset: 1
Keywords
Examples
a(1)=65: 64=2^6 (1 distinct prime 2), 65=5*13 (2 distinct primes 5 and 13), 66=2*3*11 (3 distinct primes 2, 3, and 11).
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
seq[nmax_] := Module[{om}, om[n_] := om[n] = PrimeNu[n]; Select[Range[2, nmax], om[# - 1] == om[#] - 1 && om[# + 1] == om[#] + 1 &]]; seq[2500] (* Amiram Eldar, Sep 19 2024 *)
-
PARI
for(n=3,2100,my(om=omega(n));if(omega(n-1)==om-1&&omega(n+1)==om+1,print1(n,", ")))