A342294 a(n) = Sum_{k = 0..n} binomial(n,k)^11.
1, 2, 2050, 354296, 371185666, 200097656252, 222100237312864, 193798873701831680, 231719476114879600642, 257097895846251291074612, 330463219813679264204224300, 419460465362069257397304825200, 573863850341313751827291703127200
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..306
- M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[n,k]^11,{k,0,n}],{n,0,15}] (* Harvey P. Dale, May 08 2025 *)
-
PARI
a(n) = sum(k=0, n, binomial(n, k)^11); \\ Michel Marcus, Mar 27 2021
Formula
a(n) ~ 2^(p*n)/sqrt(p) * (2/(Pi*n))^((p-1)/2) * (1 - (p-1)^2/(4*p*n)), set p=11. - Vaclav Kotesovec, Aug 04 2022