A342331 Number of compositions of n where each part after the first is either twice or half the prior part.
1, 1, 1, 3, 2, 2, 5, 4, 3, 9, 6, 4, 14, 9, 8, 22, 15, 11, 37, 24, 21, 58, 40, 30, 95, 67, 53, 157, 114, 85, 264, 187, 147, 428, 315, 244, 732, 527, 410, 1207, 892, 681, 2034, 1490, 1155, 3416, 2508, 1927, 5731, 4215, 3259, 9597, 7091, 5454, 16175, 11914, 9194, 27134, 20033, 15425, 45649, 33672, 25967, 76714
Offset: 0
Keywords
Examples
The a(1) = 1 through a(12) = 14 compositions (A = 10, B = 11, C = 12): 1 2 3 4 5 6 7 8 9 A B C 12 121 212 24 124 242 36 424 21242 48 21 42 421 21212 63 12124 24212 84 1212 12121 1242 12421 2121212 363 2121 2124 42121 2424 2421 1212121 4242 4212 121242 121212 124212 212121 212124 212421 242121 421212 12121212 21212121
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 1001 terms from Andrew Howroyd)
Crossrefs
The unordered version (partitions) is A154402.
The version allowing equality is A342340.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A274199 counts compositions with all adjacent parts x < 2y.
A342098 counts partitions with all adjacent parts x > 2y.
A342332 counts compositions with all adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342335 counts compositions with all adjacent parts x >= 2y or y = 2x.
A342337 counts partitions with all adjacent parts x = y or x = 2y.
A342338 counts compositions with all adjacent parts x < 2y and y <= 2x.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j), j= `if`(i=0, 1..n, select(t-> t::integer and t<=n, {2*i, i/2})))) end: a:= n-> b(n, 0): seq(a(n), n=0..80); # Alois P. Heinz, Mar 14 2021
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==2*#[[i-1]]||#[[i-1]]==2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, If[i == 0, Range[n], Select[{2i, i/2}, IntegerQ[#] && # <= n &]]}]]; a[n_] := b[n, 0]; a /@ Range[0, 80] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
PARI
seq(n)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k] = if(i%2==0,M[i/2,k-i]) + if(i*3<=k, M[i*2,k-i]))); concat([1], sum(q=1, n, M[q, ]))} \\ Andrew Howroyd, Mar 13 2021
Extensions
More terms from Joerg Arndt, Mar 12 2021
Comments