A342340 Number of compositions of n where each part after the first is either twice, half, or equal to the prior part.
1, 1, 2, 4, 6, 9, 17, 24, 41, 67, 109, 173, 296, 469, 781, 1284, 2109, 3450, 5713, 9349, 15422, 25351, 41720, 68590, 112982, 185753, 305752, 503041, 827819, 1361940, 2241435, 3687742, 6068537, 9985389, 16431144, 27036576, 44489533, 73205429, 120460062, 198214516, 326161107
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 17 compositions: (1) (2) (3) (4) (5) (6) (11) (12) (22) (122) (24) (21) (112) (212) (33) (111) (121) (221) (42) (211) (1112) (222) (1111) (1121) (1122) (1211) (1212) (2111) (1221) (11111) (2112) (2121) (2211) (11112) (11121) (11211) (12111) (21111) (111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4623 (first 1001 terms from Andrew Howroyd)
Crossrefs
The case of partitions is A342337.
The anti-run version is A342331.
A000929 counts partitions with adjacent parts x >= 2y.
A002843 counts compositions with adjacent parts x <= 2y.
A154402 counts partitions with adjacent parts x = 2y.
A274199 counts compositions with adjacent parts x < 2y.
A342098 counts partitions with adjacent parts x > 2y.
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342334 counts compositions with adjacent parts x >= 2y or y > 2x.
A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( b(n-j, j), j=`if`(i=0, {$1..n}, select(x-> x::integer and x<=n, {i/2, i, 2*i})))) end: a:= n-> b(n, 0): seq(a(n), n=0..42); # Alois P. Heinz, May 24 2021
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i-1]]||#[[i]]==2*#[[i-1]]||#[[i-1]]==2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, If[i == 0, Range[n], Select[ {i/2, i, 2 i}, IntegerQ[#] && # <= n &]]}]]; a[n_] := b[n, 0]; a /@ Range[0, 42] (* Jean-François Alcover, Jun 10 2021, after Alois P. Heinz *)
-
PARI
seq(n)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k] = if(i%2==0, M[i/2,k-i]) + if(i*2<=k, M[i,k-i]) + if(i*3<=k, M[i*2,k-i]))); concat([1], sum(q=1, n, M[q, ]))} \\ Andrew Howroyd, Mar 13 2021
Extensions
Terms a(21) and beyond from Andrew Howroyd, Mar 13 2021