cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342340 Number of compositions of n where each part after the first is either twice, half, or equal to the prior part.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 17, 24, 41, 67, 109, 173, 296, 469, 781, 1284, 2109, 3450, 5713, 9349, 15422, 25351, 41720, 68590, 112982, 185753, 305752, 503041, 827819, 1361940, 2241435, 3687742, 6068537, 9985389, 16431144, 27036576, 44489533, 73205429, 120460062, 198214516, 326161107
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Examples

			The a(1) = 1 through a(6) = 17 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (22)    (122)    (24)
             (21)   (112)   (212)    (33)
             (111)  (121)   (221)    (42)
                    (211)   (1112)   (222)
                    (1111)  (1121)   (1122)
                            (1211)   (1212)
                            (2111)   (1221)
                            (11111)  (2112)
                                     (2121)
                                     (2211)
                                     (11112)
                                     (11121)
                                     (11211)
                                     (12111)
                                     (21111)
                                     (111111)
		

Crossrefs

The case of partitions is A342337.
The anti-run version is A342331.
A000929 counts partitions with adjacent parts x >= 2y.
A002843 counts compositions with adjacent parts x <= 2y.
A154402 counts partitions with adjacent parts x = 2y.
A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342).
A274199 counts compositions with adjacent parts x < 2y.
A342094 counts partitions with adjacent x <= 2y (strict: A342095).
A342096 counts partitions without adjacent x >= 2y (strict: A342097).
A342098 counts partitions with adjacent parts x > 2y.
A342330 counts compositions with x < 2y and y < 2x (strict: A342341).
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342334 counts compositions with adjacent parts x >= 2y or y > 2x.
A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          b(n-j, j), j=`if`(i=0, {$1..n}, select(x->
           x::integer and x<=n, {i/2, i, 2*i}))))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..42);  # Alois P. Heinz, May 24 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i-1]]||#[[i]]==2*#[[i-1]]||#[[i-1]]==2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, If[i == 0, Range[n], Select[ {i/2, i, 2 i}, IntegerQ[#] && # <= n &]]}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 42] (* Jean-François Alcover, Jun 10 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k] = if(i%2==0, M[i/2,k-i]) + if(i*2<=k, M[i,k-i]) + if(i*3<=k, M[i*2,k-i]))); concat([1], sum(q=1, n, M[q, ]))} \\ Andrew Howroyd, Mar 13 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 13 2021