A342358 Balanced numbers (A020492) that are also arithmetic numbers (A003601) and harmonic numbers (A001599).
1, 6, 140, 270, 2970, 332640, 14303520, 5297292000
Offset: 1
Examples
For 6: tau(6) = 4, phi(6) = 2, sigma(6) = 12, 6*tau(6)/sigma(6) = 6*4/12 = 2, sigma(6)/tau(6) = 3 and sigma(6)/phi(6) = 2, hence 6 is a term.
Links
- Hans-Joachim Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., Vol. 133 (1957), pp. 371-374.
- Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, Vol. 55, No. 10 (1948), pp. 615-619.
- Oystein Ore, On the averages of the divisors of a number (annotated scanned copy).
Crossrefs
Programs
-
Maple
with(numtheory): filter:= q -> (sigma(q) mod phi(q) = 0) and (sigma(q) mod tau(q) = 0 and (q*tau(q) mod sigma(q) = 0) : select(filter, [$1..300000]);
-
Mathematica
Select[Range[350000], And @@ Divisible[(s = DivisorSigma[1, #]), {(d = DivisorSigma[0, #]), EulerPhi[#]}] && Divisible[#*d, s] &] (* Amiram Eldar, Mar 09 2021 *)
-
PARI
isok(m) = my(s=sigma(m), t=numdiv(m)); !(s % eulerphi(m)) && !(s % t) && !((m*t) % s); \\ Michel Marcus, Mar 09 2021
Extensions
a(6)-a(8) from Amiram Eldar, Mar 09 2021
Comments