A342372 Triangle T(n,k) of number of ways of arranging q nonattacking semi-queens on an n X n toroidal board, where 0 <= k <= n.
1, 1, 1, 1, 4, 0, 1, 9, 9, 3, 1, 16, 48, 32, 0, 1, 25, 150, 250, 75, 15, 1, 36, 360, 1200, 1224, 288, 0, 1, 49, 735, 4165, 8869, 6321, 931, 133, 1, 64, 1344, 11648, 43136, 64512, 33024, 4096, 0, 1, 81, 2268, 27972, 160866, 423306, 469800
Offset: 1
Examples
1; 1, 1; 1, 4, 0; 1, 9, 9, 3; 1, 16, 48, 32, 0; 1, 25, 150, 250, 75, 15;
Links
- Walter Trump, Table of n, a(n) for n = 1..222
- Walter Trump, Semi-queen problem
Formula
T(n,0) = 1.
T(n,1) = n^2.
T(n,2) = n^2*(n-1)*(n-2)/2.
T(n,3) = n^2*(n-1)*(n-2)*(n^2-6n+10)/6.
T(2n+1,2n+1) = A006717(n).
T(2n,2n) = 0.
Comments