A342381 Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0.
1, 1, 1, 5, 2, 1, 29, 15, 3, 1, 233, 116, 30, 4, 1, 2329, 1165, 290, 50, 5, 1, 27949, 13974, 3495, 580, 75, 6, 1, 391285, 195643, 48909, 8155, 1015, 105, 7, 1, 6260561, 3130280, 782572, 130424, 16310, 1624, 140, 8, 1, 112690097, 56345049, 14086260, 2347716, 293454, 29358, 2436, 180, 9, 1
Offset: 0
Examples
Table begins: n\k | 0 1 2 3 4 5 6 7 8 9 ----+-------------------------------------------------------------- 0 | 1 1 | 1 1 2 | 5 2 1 3 | 29 15 3 1 4 | 233 116 30 4 1 5 | 2329 1165 290 50 5 1 6 | 27949 13974 3495 580 75 6 1 7 | 391285 195643 48909 8155 1015 105 7 1 8 | 6260561 3130280 782572 130424 16310 1624 140 8 1 9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1 For the cube in n=2 dimensions (the square) there is T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity: 2 +---+ 3| |1; +---+ 4 T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips: 4 2 +---+ +---+ 3| |1 and 1| |3; +---+ +---+ 2 4 and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips: 1 4 3 3 1 +---+ +---+ +---+ +---+ +---+ 2| |4, 1| |3, 4| |2, 2| |4, and 4| |2. +---+ +---+ +---+ +---+ +---+ 3 2 1 1 3
Links
- Peter Kagey, Rows n = 0..100, flattened
- Wikipedia, Cross-polytope
- Wikipedia, Hypercube
- Wikipedia, Hyperoctahedral group
Crossrefs
Programs
-
PARI
f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354 T(n, k) = f(n-k)*binomial(n, k); \\ Michel Marcus, Mar 10 2021
Comments