cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342381 Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 29, 15, 3, 1, 233, 116, 30, 4, 1, 2329, 1165, 290, 50, 5, 1, 27949, 13974, 3495, 580, 75, 6, 1, 391285, 195643, 48909, 8155, 1015, 105, 7, 1, 6260561, 3130280, 782572, 130424, 16310, 1624, 140, 8, 1, 112690097, 56345049, 14086260, 2347716, 293454, 29358, 2436, 180, 9, 1
Offset: 0

Views

Author

Peter Kagey, Mar 09 2021

Keywords

Comments

Equivalently the number of symmetries of the n-dimensional cross-polytope that fix exactly 2*k vertices.
If a facet of the hypercube is fixed, then the opposite facet must also be fixed.

Examples

			Table begins:
n\k |         0        1        2       3      4     5    6   7 8 9
----+--------------------------------------------------------------
  0 |         1
  1 |         1        1
  2 |         5        2        1
  3 |        29       15        3       1
  4 |       233      116       30       4      1
  5 |      2329     1165      290      50      5     1
  6 |     27949    13974     3495     580     75     6    1
  7 |    391285   195643    48909    8155   1015   105    7   1
  8 |   6260561  3130280   782572  130424  16310  1624  140   8 1
  9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1
For the cube in n=2 dimensions (the square) there is
T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity:
     2
   +---+
  3|   |1;
   +---+
     4
T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips:
     4           2
   +---+       +---+
  3|   |1 and 1|   |3;
   +---+       +---+
     2           4
and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips:
     1         4         3         3            1
   +---+     +---+     +---+     +---+        +---+
  2|   |4,  1|   |3,  4|   |2,  2|   |4, and 4|   |2.
   +---+     +---+     +---+     +---+        +---+
     3         2         1         1            3
		

Crossrefs

Columns and diagonals: A000354 (k=0), A161937 (k=1), A028895 (n=k+2).
Row sums are A000165.

Programs

  • PARI
    f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354
    T(n, k) = f(n-k)*binomial(n, k); \\ Michel Marcus, Mar 10 2021

Formula

T(n,k) = A114320(2n,k)/A001147(n).
T(n,k) = A000354(n-k)*binomial(n,k).