A342445 Numbers that are divisible by their nonzero digits but are not divisible by the product of their nonzero digits.
22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 202, 204, 222, 244, 248, 264, 280, 288, 303, 324, 330, 333, 336, 366, 396, 404, 408, 412, 420, 424, 440, 444, 448, 488, 505, 515, 555, 606, 636, 648, 660, 666, 707, 728, 770, 777, 784, 808, 824, 840
Offset: 1
Examples
204 is divisible by 2 and 4 but 204 is not divisible by 2*4 = 8, hence 204 is a term. 248 is divisible by 2, by 4 and by 8 but 248 is not divisible by 2*4*8 = 64, hence 248 is a term.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Mathematica
q[n_] := AllTrue[(d = Select[IntegerDigits[n], # > 0 &]), Divisible[n, #] &] && ! Divisible[n, Times @@ d]; Select[Range[840], q] (* Amiram Eldar, Mar 21 2021 *) dnzQ[n_]:=With[{c=DeleteCases[IntegerDigits[n],0]},Union[Boole[Divisible[n,c]]]=={1}&&!Divisible[n,Times@@c]]; Select[ Range[ 1000],dnzQ] (* Harvey P. Dale, Jan 16 2025 *)
-
PARI
isok(m) = my(d=select(x->(x != 0), digits(m))); (m % vecprod(d)) && (sum(k=1, #d, m % d[k]) == 0); \\ Michel Marcus, Mar 22 2021
Comments