cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342445 Numbers that are divisible by their nonzero digits but are not divisible by the product of their nonzero digits.

Original entry on oeis.org

22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 202, 204, 222, 244, 248, 264, 280, 288, 303, 324, 330, 333, 336, 366, 396, 404, 408, 412, 420, 424, 440, 444, 448, 488, 505, 515, 555, 606, 636, 648, 660, 666, 707, 728, 770, 777, 784, 808, 824, 840
Offset: 1

Views

Author

Bernard Schott, Mar 20 2021

Keywords

Comments

Numbers that are divisible by the product of their nonzero digits (A055471) are trivially divisible by each of their nonzero digits (A002796), but the converse is false. This sequence = A002796 \ A055471 and consists of these counterexamples.
This sequence differs from A337163: the first sixteen terms are the same but a(17) = 202 while A337163(17) = 222.

Examples

			204 is divisible by 2 and 4 but 204 is not divisible by 2*4 = 8, hence 204 is a term.
248 is divisible by 2, by 4 and by 8 but 248 is not divisible by 2*4*8 = 64, hence 248 is a term.
		

Crossrefs

Equals A002796 \ A055471.
Cf. A337163 = A034838 \ A007602 (subsequence of zeroless numbers).

Programs

  • Mathematica
    q[n_] := AllTrue[(d = Select[IntegerDigits[n], # > 0 &]), Divisible[n, #] &] && ! Divisible[n, Times @@ d]; Select[Range[840], q] (* Amiram Eldar, Mar 21 2021 *)
    dnzQ[n_]:=With[{c=DeleteCases[IntegerDigits[n],0]},Union[Boole[Divisible[n,c]]]=={1}&&!Divisible[n,Times@@c]]; Select[ Range[ 1000],dnzQ] (* Harvey P. Dale, Jan 16 2025 *)
  • PARI
    isok(m) = my(d=select(x->(x != 0), digits(m))); (m % vecprod(d)) && (sum(k=1, #d, m % d[k]) == 0); \\ Michel Marcus, Mar 22 2021