A342455 The fifth powers of primorials: a(n) = A002110(n)^5.
1, 32, 7776, 24300000, 408410100000, 65774855015100000, 24421743243121524300000, 34675383095948798128025100000, 85859681408495723096004822084900000, 552622359415801587878908964592391520700000, 11334919554709059323420895730190266747414284300000, 324509123504618420438174660414872405442002404781629300000
Offset: 0
Keywords
Links
- Young Ju Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), pp. 357-372.
- Index entries for sequences related to primorial numbers
Crossrefs
Programs
-
Mathematica
FoldList[Times, 1, Prime@ Range[11]]^5 (* Michael De Vlieger, Mar 14 2021 *)
-
PARI
A342455(n) = prod(i=1,n,prime(i))^5;
-
Python
from sympy.ntheory.generate import primorial def A342455(n): return primorial(n)**5 if n >= 1 else 1 # Chai Wah Wu, Mar 13 2021
Comments