A342858 a(n) is the least integer h such that there exists a Pythagorean triple (x, y, h) that satisfies f(x)+f(y)+f(h)=n where f(m)=A176774(m) is the smallest polygonality of m; a(n) = 0 if no such h exists.
13530, 136, 35, 5, 4510, 10, 100, 45, 51, 1404
Offset: 9
Examples
a(9) = 13530 with A176774([8778, 10296, 13530]) = [3,3,3]. a(10) = 136 with A176774([64, 120, 136]) = [4,3,3]. a(11) = 35 with A176774([21, 28, 35]) = [3,3,5]. a(12) = 5 with A176774([3, 4, 5]) = [3,4,5]. a(13) = 4510 with A176774([2926, 3432, 4510]) = [3,5,5]. a(14) = 10 with A176774([6, 8, 10]) = [3,8,3]. a(15) = 100 with A176774([28, 96, 100]) = [3,8,4]. a(16) = 45 with A176774([27, 36, 45]) = [10,3,3]. a(17) = 51 with A176774([45, 24, 51]) = [3,9,5]. a(18) = 1404 with A176774([540, 1296, 1404]) = [7,4,7].
Links
- Michel Marcus, Table of n, a(n) for n = 9..10000, with 0 for a(19)
Crossrefs
Programs
-
PARI
tp(n) = if (n<3, [n], my(v=List()); fordiv(2*n, k, if(k<2, next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v, s))); v = Vec(v); v[#v]); \\ A176774 vsum(v) = vecsum(apply(tp, v)); lista(limp, lim) = {my(vr = vector(limp)); for(u = 2, sqrtint(lim), for(v = 1, u, if (u*u+v*v > lim, break); if ((gcd(u,v) == 1) && (0 != (u-v)%2), for (i = 1, lim, if (i*(u*u+v*v) > lim, break); my(w = [i*(u*u - v*v), i*2*u*v, i*(u*u+v*v)]); my(h = i*(u*u+v*v)); my(sw = vsum(w)); if (sw <= limp, if (vr[sw] == 0, vr[sw] = h, if (h < vr[sw], vr[sw] = h))););););); vector(#vr - 8, k, vr[k+8]);} lista(80, 15000) \\ Michel Marcus, Apr 16 2021
Comments